Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Imaging Facility adds Two Tools for Microscopy

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Cornell's Imaging Facility owns microscopes, scanners and ultrasound units for revealing details that can't be seen with the naked eye.

Now the facility has added two more state-of-the-art machines, one to extract tiny samples for genetic analysis and another to image fast microscopic events.

The Imaging Facility, located in Weill Hall and in the College of Veterinary Medicine, specializes in microscopy, whole organism imaging and high-resolution micro-CT (computed tomography), for visualizing samples from cells and engineered tissues to fossils, tomatoes and sharks.

The facility now has a spinning disk confocal microscope that enables users to image and manipulate fluorescent specimens rapidly; and an instrument for laser capture microdissection, which allows researchers to isolate specific cells or tissues from a sample by slicing out particular regions with a laser.

Once cells or tissues are cut, the laser capture microdissection machine pops the new sample into a tube where its genomic or proteomic profile can be analyzed. Normally, a sample with many tissue types is ground up and genetically sequenced. Researchers must then piece together fragments of genetic code from the potpourri. This new method allows researchers to isolate specific cells or regions prior to genetic analysis.

Cornell has two other laser capture microdissection tools on campus. The new one in the Imaging Facility is part of the Biotechnology Resource Center (BRC), which provides Cornell researchers with an array of state-of-the-art instruments and services. Managed by Cornell's Institute for Biotechnology, whose director is Jocelyn Rose, professor of plant biology, the BRC comprises seven facility laboratories focused on genomics (DNA sequencing, genotyping and microarrays), epigenomics, proteomics and mass spectrometry, bio-IT, bioinformatics and computational biology, advanced technology assessment and imaging. These tools and services are available to the university community and to investigators at other institutions.

The laser capture microdissection unit provides another capability for genomic analysis that can be bridged with other BRC resources for every phase of an experiment, said research scientist Rebecca Williams, the Imaging Facility's director.

"A researcher can microdissect a sample and end up with a tube of cells. Then we can help them find the correct genomics core facility" to have that sample sequenced, and then put them in touch with a biostatistics technician who can help analyze the sample, she added.

By raising and lowering the field of view, the new spinning disk confocal microscope can take repeated shots that are stitched together to create 3-D images. It can shoot more than 100 frames per second, allowing researchers to record such quick processes as calcium signaling or other fast movements. It also allows researchers to use photoactivated proteins (that turn on or change colors when hit with light) or photobleached proteins (that turn off when hit with light), providing insights to how proteins move within cells.

"Spinning disk confocal microscopes have been around for maybe 10 years, but this system is fully loaded; it's a fancy system," said Williams. It is fitted with three cameras for 3-D imaging of various colors, a photomanipulation unit, and control of such environmental conditions as carbon dioxide and oxygen levels.

Along with image analysis and visualization, the facility has software to manage the amount of data generated from taking 100 images per second, for example.

"Our job is to train people in these technologies and make it as easy as possible to use them," Williams said. "We train 100 researchers a year to use these microscopes."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Bacteria Be Gone!
New technology keeps bacteria from sticking to surfaces.
Monday, January 19, 2015
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Chemists Show That ALS is a Protein Aggregation Disease
Using a technique that illuminates subtle changes in individual proteins, chemistry researchers at Cornell have uncovered new insight into the underlying causes of Amyotrophic Lateral Sclerosis (ALS).
Thursday, October 23, 2014
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
A New Player in Lipid Metabolism Discovered
Specially engineered mice gained no weight, and normal counterparts became obese on the same high-fat, obesity-inducing Western diet.
Monday, August 18, 2014
Ingested Nanoparticles May Damage Liver
Although nanoparticles in food, sunscreen and other everyday products have many benefits, researchers from Cornell are finding that at certain doses, the particles might cause human organ damage.
Tuesday, August 12, 2014
Foodborne Pathogen Detection Speeds Up Dramatically
Next-generation sequencing techniques allow rapidly identification of strains of salmonella, quickening responses to potential outbreaks.
Monday, July 21, 2014
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!