Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Found to Recycle Their Own Molecules

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Stem cells of the aging bone marrow recycle their own molecules in order to survive and keep replenishing the blood and immune systems as the body ages.

The recycling process, known as autophagy, or self eating, involves reusing molecules and the chemical energy obtained from these molecules to withstand the killing effect of metabolic stress that intensifies as the body ages.

The discovery, reported online February 6 in Nature, showed that autophagy allows stem cells to avoid the alternative response to stress, which is programmed cellular suicide, in which cells that aren't up to snuff kill themselves for the greater good.

While this trick of autophagy may help delay the onset of anemia, immune-system failure and other maladies that occur with age, as a survival strategy it is a bit of a compromise, said the senior author of the study, Emmanuelle Passegué, PhD, of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.

Autophagy might increase cancer risk, she said, by allowing old stem cells to survive despite having accumulated risky mutations over a lifetime.

"Almost all blood malignancies start in the stem cell niche," said Passegué. Many of the deadliest and most prevalent blood cancers -- for example, acute myelogenous leukemia -- appear to arise from damaged stem cells and becomes increasingly common with age.

Trying to keep old stem cells of the blood and immune system functioning well without raising cancer risks is one of the next big challenges in biomedical research she said.

"Our next step is to look within the stem cells to see what goes wrong as they begin to perform poorly with age."

The overall finding of the study was that autophagy is triggered in blood, or hematopoietic, stem cells when a genetic switch called FOXO3A is turned on. The researchers showed that the process is not activated in the more mature, specialized cells of the blood or immune system.

"Our study indicates that autophagy is a mechanism of stress response that specifically protects stem cells," said Passegué. "It's a way of cleaning up within the cell that liberates amino acids and nutrients so that the stem cell can use that energy to survive being deprived of growth factors in the bone marrow niche where they reside."

In their experiments the researchers showed that metabolic stress in hematopoietic stem cells growing in a dish - in this case caused by lack of cytokines, which are involved in cell signaling, and growth factors, which stimulate growth processes in the cell - triggered FOX03A-driven autophagy. Only when these cells were prevented from activating autophagy did they commit suicide instead.

Similarly, in mice deprived of food for 24 hours, hematopoietic stem cells activated autophagy. Notably, mice that were genetically engineered to lack a key component of the autophagy biochemical machinery could not activate autophagy in response to food deprivation and lost hematopoietic stem cells as a result.

Scientists previously proposed that one factor in aging might be that hematopoietic stem cells become less able to undergo autophagy to save themselves. But when Passegué's lab group compared hematopoietic stem cells from old and young mice, they found that autophagy was always active in old mice, but not in young - and perhaps less stressed - mice.

"We were very surprised," Passegué said. "We expected that this mechanism would be falling apart in old stem cells." In fact, the UCSF researchers show the opposite, that old stem cells absolutely rely on autophagy for survival and die when it is blocked.

The age-associated degradation of the bone marrow milieu probably restricts availability of nutrition and growth factors to old stem cells, according to Passegué. Such metabolic stress may cause stem cells to become damaged and to malfunction, she said.

UCSF study co-authors were postdoctoral fellows Matthew Warr, PhD, Ritu Malhotra, PhD, and Damien Reynaud, PhD; associate professor Jayanta Debnath, MD; technician Mikhail Binnewies; graduate student Johanna Flach, and intern Trig Garg. The National Institutes of Health, the California Institute for Regenerative Medicine and the Leukemia and Lymphoma Society Scholars program funded the research.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Researchers Reverse Bacterial Resistance to Antibiotics
Evidence continues to surface that supports the premise that antibiotics which have been out of use could still be effective in treating drug-resistant bacteria.
Friday, May 08, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!