Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Patients’ Skin Cells are Transformed into Heart Cells to Create a ‘Disease-In-A-Dish’

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Lab model of an inherited, life-threatening disease known as ARVD/C allows researchers to study the condition and find ways to treat it.

Researchers at the Johns Hopkins University School of Medicine and Sanford-Burnham Medical Research Institute in California have created a laboratory-grown cell model of an inherited heart condition known as arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). The model was made by transforming skin cells from two patients with ARVD/C into heart cells using stem cell technology. The researchers were able, for the first time, to coax the cells to mature so that they would mimic the ARVD/C disease that strikes in adulthood.

An article describing the research, and its potential for facilitating the development of new treatments for the disease, is published online on January 27, 2013 by Nature.

"There is currently no treatment to prevent progression of ARVD/C, which is a rare inherited disorder that can cause sudden cardiac death, especially among young athletes. With this new model, we hope we are now on a path to developing better therapies for this life-threatening disease," says Daniel Judge, M.D., associate professor and medical director of the Center for Inherited Heart Diseases at the Johns Hopkins University School of Medicine and a study co-author.

Most people with ARVD/C don’t know they have it until they experience symptoms as young adults, including a heart rhythm abnormality, heart failure, or even sudden cardiac arrest due to arrhythmias caused by an enlarged and weakened right ventricle. Current treatments include medications, such as beta blockers, that are used to treat other heart conditions, as well as implantable cardiac defibrillators to shock the heart back into normal rhythm. Patients are told not to engage in rigorous, competitive athletic activities because the disease causes fatty scars in the heart that are exacerbated with exercise.

"It’s tough to demonstrate that a disease-in-a-dish model is clinically relevant for an adult-onset disease. But we made a key finding here - we can recapitulate the defects in this disease only when we induce adult-like metabolism. This is an important breakthrough considering that ARVD/C symptoms usually don't arise until young adulthood. Yet the stem cells we’re working with are embryonic in nature," says Huei-Sheng Vincent Chen, M.D., Ph.D., associate professor at Sanford-Burnham and senior author of the study.

To recreate ARVD/C heart cells in the lab, the research team first obtained skin samples from ARVD/C patients at Johns Hopkins, which is home to one of the largest ARVD/C patient registries in the world. They added genetic materials to the adult skin cells to dial back the developmental clock, producing embryonic-like induced pluripotent stem cells (iPSCs), which are capable of developing into any type of cells. The researchers then coaxed the iPSCs into producing an unlimited supply of patient-specific heart muscle cells. These heart cells were largely embryonic in nature, but carried the original patient’s genetic mutations.

For nearly a year, no matter what they tried, the team couldn’t get their ARVD/C heart muscle cells to show any signs of the disease. Without those signs, these young muscle cells were of no value for studying the disease or testing new therapeutic drugs.

With further study, however, the team discovered that the type of energy used by the cells was the key to inducing signs of ARVD/C, an adult disease, in their embryonic-like cells. Human fetal heart muscle cells use glucose (sugar) as their primary source of energy. In contrast, adult heart muscle cells prefer using fat for energy production. So Chen’s team applied several chemical cocktails to trigger this shift to adult metabolism in their model and found that metabolic malfunction is at the core of ARVD/C disease.

Chen’s team eventually tracked down the final piece of the puzzle to make patient-specific heart muscle cells behave like sick ARVD/C heart cells: the abnormal overactivation of a protein called PPAR , a critical element in the body’s regulation of fatty acids and glucose metabolism. With the newly established model, they not only replicated ARVD/C diseased cells in a dish, but also were able to test new potential drug targets for treating the disease.

"This unique model of ARVD/C not only helped us better understand how the disease develops, we used it to block two pathways in the development of the diseased cells, preventing the progression of the disease. Now, we can explore using these pathways to create effective treatments for ARVD/C," says Judge.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Tuesday, October 13, 2015
Paternal Sperm May Hold Clues to Autism
Tags on DNA from fathers’ sperm linked to children’s autism symptoms.
Friday, April 17, 2015
New Autism-Causing Genetic Variant Identified
Novel approach expected to be useful for other diseases too.
Saturday, March 28, 2015
Bad Luck of Random Mutations Plays Predominant Role in Cancer, Study Shows
Statistical modeling links cancer risk with number of stem cell divisions.
Tuesday, January 06, 2015
Enzyme's Alter Ego Helps Activate the Immune System
Findings could shed light on related Alzheimer's protein.
Tuesday, January 06, 2015
Researchers Tease Out Glitches in Immune System's Self-Recognition
A new study revises understanding of how the process works and sheds light on autoimmune disease.
Saturday, November 22, 2014
Cancer Leaves a Common Fingerprint on DNA
Chemical alterations to genes appear key to tumor development.
Tuesday, August 26, 2014
Researchers Use Human Stem Cells to Create Light-Sensitive Retina in a Dish
Johns Hopkins researchers have created a 3-D complement of human retinal tissue in the laboratory.
Saturday, June 14, 2014
Signals Found That Recruit Host Animals’ Cells, Enabling Breast Cancer Metastasis
Mouse studies suggest that blocking aid from white blood cells and stem cells could keep tumors contained.
Thursday, May 22, 2014
Common Genetic Pathway Could Be Conduit to Pediatric Tumor Treatment
Investigators have found a known genetic pathway to be active in many difficult-to-treat pediatric brain tumors called low-grade gliomas.
Monday, November 11, 2013
A Simple Blood Test May Catch Early Pancreatic Cancer
Currently, disease usually found too late to save lives.
Wednesday, October 30, 2013
New Testing Strategy Detects Population-Wide Vitamin and Mineral Deficiencies
Could speed mass intervention in developing countries.
Wednesday, October 30, 2013
Stem Cells may do Best with a Little Help from their Friends
“Helper cells” improve survival rate of transplanted stem cells, mouse study finds.
Wednesday, September 11, 2013
Molecular Marker Predicts Patients Most Likely to Benefit Longest From Two Popular Cancer Drugs
Preliminary study needs further confirmation.
Wednesday, September 11, 2013
Discovery Increases Diagnostic Certainty and Opportunity for Individualized Drug Therapy
Of the over 1,900 errors already reported in the gene responsible for CF, it is unclear how many of them actually contribute to the inherited disease.
Thursday, August 29, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos