Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Royal Mint Selects Analytical Technology to Equip New Effluent Treatment Plant

Published: Tuesday, February 19, 2013
Last Updated: Tuesday, February 19, 2013
Bookmark and Share
Achieves new level of trade effluent monitoring with Analytical Technology instrument.

The Royal Mint has selected Analytical Technology to equip its new effluent treatment plant.

The Royal Mint is one of the world’s leading export mints, making coins and medals for an average of 60 countries every year.

Located in Llanstrisant, South Wales, the headquarters were opened in 1968 by the Queen in readiness for the introduction of decimal coinage.

With a first responsibility to make and distribute United Kingdom coins, the company employs more than 700 people and operates round-the-clock for 50 weeks a year.

With the treatment of trade effluent increasingly coming under the spotlight, The Royal Mint recently embarked on a multi-million pound project to build a new effluent treatment plant to replace two existing treatment lines and support increased production capacity from two new nickel plating lines.

The new plant would need to monitor hydrogen peroxide levels, pH and turbidity to ensure the safety of the effluent being discharged.

The new effluent treatment plant aimed to allow the business to discharge 100% of its trade effluents into the sewer, requiring first class monitoring instrumentation to ensure water quality.

If trade effluents are not safe to be released into a sewer, there is a requirement for companies to either change their process to no longer produce the effluent, treat the effluent before discharging to the sewer or pay for it to be taken off site, each option both time consuming and costly.

The Royal Mint selected Analytical Technology’s pH, hydrogen peroxide and turbidity sensors for its water monitoring needs. The Q45P AutoClean pH monitor with MCERTS classification will be used to control pH levels throughout the nickel-plating process and the pH correction process in the new treatment plant, while the Q45H/84 hydrogen peroxide sensors would monitor the effluent to ensure peroxide levels remained low enough to allow efficient effluent treatment.

A minimal maintenance instrument, the ATI d15/76 AutoClean turbidity monitors were chosen to determine water quality by measuring the degree to which the water has lost its transparency due to the presence of suspended solids.

ATi’s F12 gas detection system was also implemented to protect employees from harmful exposure.

Graham Hartry, Environmental Manager, Blank Processing, The Royal Mint explains: “Our new effluent treatment plant has been built using the Best Available Technology (BAT) and will significantly reduce the amount of effluent discharged, allowing us to recycle wherever possible. The use of Analytical Technology’s pH, hydrogen peroxide and turbidity monitors has allowed us to regulate the levels of chemicals and suspended solids within our effluent discharge, ensuring that we comply with stringent regulations and do our utmost to protect the environment.”

As a result of the new effluent treatment plant incorporating Analytical Technology instrumentation, The Royal Mint discharge 100 per cent of its trade effluents into the sewer, without damaging the sewer infrastructure or the environment.

Key benefits include the instruments being easy to set-up and maintain, delivering reliable and compliant results as well as delivering high levels of customer support to keep the plant running.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Roundtable Highlights Need for Improved Maintenance of DO Sensors
Improved maintenance of dissolved oxygen sensors for increased efficiency and accuracy for water treatment plants.
Tuesday, February 12, 2013
Roundtable Meeting Highlights Move towards Self-Monitoring of Trade Effluents
Confidence in continuous monitoring equipment grows.
Thursday, August 09, 2012
Analytical Technology Expands Team
Company is expanding its team to increase capacity as prestigious contract wins are secured.
Tuesday, January 17, 2012
Manchester-based Analytical Technology Achieves Record Turnover as Water Industry Thrives
Achievement demonstrates the buoyancy of the current market for water monitoring instrumentation, despite the present economic recession.
Wednesday, August 03, 2011
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!