Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Parasite Metabolism can Foretell Disease Ranges under Climate Change

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Knowing the temperatures that viruses, bacteria, worms and all other parasites need to grow and survive could help determine the future range of infectious diseases under climate change.

Princeton University researchers developed a model that can identify the prospects for nearly any disease-causing parasite as the Earth grows warmer, even if little is known about the organism. Their method calculates how the projected temperature change for an area would alter the creature's metabolism and life cycle, the researchers report in the journal Ecology Letters.

Lead author Péter Molnár, a Princeton postdoctoral researcher of ecology and evolutionary biology, explained that the technique is an all-inclusive complement to current methods of predicting how climate change will affect disease, which call for a detailed knowledge of the environmental factors a specific parasite needs to thrive. But for many parasites, that information doesn't exist.

The more general Princeton model is based on the metabolic theory of ecology. Under this premise, all biological organisms need a balance between body size and body temperature to maintain the metabolism that keeps their organs functioning. Like any cold-blooded creature, disease-causing parasites rely on external temperatures for this balance. Scientists with knowledge of a parasite's body size and life cycle could use the Princeton metabolic model to predict how the organism would fare in altered climates.

"Our framework is applicable to pretty much any parasite, and utilizes established metabolic patterns shown to hold across a wide variety of species," Molnár said.

"It would be impossible to ever gather enough data to develop a separate climate-change model for each existing and emerging disease in humans, wildlife and livestock," Molnár said. "With our physiological approach, many of the parameters for a specific pathogen can be predicted based on what is known about metabolic processes in all parasites, so that the model remains applicable to new and less-studied species as well."

The Princeton model estimates the "fundamental thermal niche" of a parasite, the area between the lowest and highest temperature in which a specific parasite prospers. The researchers show that an organism already kicking around the high end of that range could die out when things heat up, while a parasite lingering at the low end could lead to novel epidemics in host populations and extend to new areas.

Because global temperatures will still differ by elevation and distance from the equator, some parasites also might "migrate" from their previous territory — rendered inhospitable by higher temperatures — to one more inviting. That could expose human and animal populations to new diseases to which they may have little natural resistance. Thus, having an idea of which areas a parasite might transition to is important, Molnár said.

"As metabolism varies with temperature, parasite life-cycle components such as mortality, development, reproduction or infectivity may also vary with temperature," Molnár said. "If, for a specific parasite, we know the temperature dependence of its metabolism, or the temperature dependence of its life-cycle components, our model allows using these temperature effects to evaluate the impact of climate change on parasite fitness, and thus the regions in which the parasite may occur in the future."

Ryan Hechinger, a biologist at the University of California-Santa Barbara, said the framework adds to recent research tempering the fear that infectious diseases will uniformly flourish as global temperatures rise. Hechinger, who focuses his research on parasite ecology and evolution, is familiar with the work but had no role in it.

"There has been quite a bit of a 'the sky is falling' attitude from people claiming that infectious diseases are only going to get worse," Hechinger said. "We can't forget that most infectious diseases are caused by living agents. Like most living things, these agents may be negatively or positively affected by climate change. The modeling in this paper clarifies that infectious diseases may increase or decrease under climate change, specifically under global warming."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Monday, May 18, 2015
Measles Virus Said to Suppress Immune System for up to Three Years
New research suggests measles can suppress children’s immune systems for up to three years following infection, leaving them susceptible to a host of other deadly diseases.
Monday, May 11, 2015
A Gene That Shaped The Evolution Of Darwin's Finches
Researchers from Princeton University and Uppsala University in Sweden have identified a gene in the Galápagos finches studied by English naturalist Charles Darwin that influences beak shape and that played a role in the birds' evolution from a common ancestor more than 1 million years ago.
Thursday, February 12, 2015
A Single Cell Smashes and Rebuilds Its Own Genome
Life can be so intricate and novel that even a single cell can pack a few surprises, according to a study led by Princeton University researchers.
Tuesday, September 09, 2014
Wild Sheep Show Benefits of Putting Up With Parasites
Researchers used 25 years of data on a population of wild sheep living on an island in northwest Scotland to assess the evolutionary importance of infection tolerance.
Monday, August 18, 2014
Collaboration Leads to Possible Shortcut to New Drugs
The reaction, reported in Science, demonstrates how a carboxylic acid can be transformed into a very reactive site through use of a novel photoredox catalyst.
Thursday, June 26, 2014
Even if Emissions Stop, Carbon Dioxide Could Warm Earth for Centuries
Study suggests that it might take a lot less carbon than previously thought to reach the global temperature scientists deem unsafe.
Monday, November 25, 2013
Small Bits of Genetic Material Fight Cancer's Spread
A class of molecules called microRNAs may offer cancer patients two ways to combat their disease.
Monday, October 21, 2013
Physicists, Biologists Unite to Expose How Cancer Spreads
New study has found that cancer cells that can break out of a tumor are more aggressive and nimble than nonmalignant cells.
Thursday, May 02, 2013
Schmidt Fund Awards to Advance Innovations in Drug Therapy and Search for Planets
Two Princeton University research projects have been selected to receive grants from Princeton's Eric and Wendy Schmidt Transformative Technology Fund.
Friday, April 26, 2013
Study Casts Light on Deadly Immune Response
Volunteers’ extreme immune response helps create model for immune signals.
Tuesday, March 19, 2013
Synthetic Fuels Could Eliminate Entire U.S. Need for Crude Oil, Create 'New Economy'
The United States could eliminate the need for crude oil by using a combination of coal, natural gas and non-food crops to make synthetic fuel, a team of Princeton researchers has found.
Wednesday, November 28, 2012
Far from Random, Evolution Follows a Predictable Genetic Pattern, Princeton Researchers Find
Evolution, often perceived as a series of random changes, might in fact be driven by a simple and repeated genetic solution to an environmental pressure, that a broad range of species happen to share.
Friday, October 26, 2012
Synthetic Liver Enzyme Could Result in More Effective Drugs with Fewer Side Effects
Medicines could be made to have fewer side effects and work in smaller doses with the help of a new technique that makes drug molecules more resistant to breakdown by the human liver.
Tuesday, October 16, 2012
Nanotechnology Breakthrough could Dramatically Improve Medical Tests
A laboratory test used to detect disease and perform biological research could be made more than 3 million times more sensitive, say researchers who combined standard biological tools with a breakthrough in nanotechnology.
Tuesday, June 26, 2012
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!