Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Capturing Cancer Cells

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
When dealing with cancer, time is critical. Identifying cancer before it spreads can often be the difference between life and death, so early diagnosis is key.

Cancers begin in one part of the body and often spread through the bloodstream into other organs. This process is known as 'metastasis', and causes secondary tumours, 'metastases', to grow at other locations in the body. These cells which are released from the primary tumour into the bloodstream are called 'circulating tumour cells' (CTCs).

CTCs can be circulating through the bloodstream for years before any metastases form. If small numbers of CTCs can be detected in blood samples, cancers can be diagnosed before they spread. This is no easy task; blood samples might only contain a single CTC among millions of blood cells, and it can be difficult to distinguish between CTCs and normal cells.

'A common signature that a cell in the blood is cancerous is that the CTC has a protein called "EpCAM" on its surface,' says Dr Mark Howarth, a biochemist at the University of Oxford. Dr Howarth develops innovative biological and chemical techniques to image and diagnose cancer, and his group has recently been investigating the use of magnetic beads in cancer diagnosis.

'To catch CTCs, the most common way is to use magnetic attraction,' explains Dr Howarth. 'We use small magnetic beads coated with antibodies. Antibodies are proteins, normally produced by the immune system, which bind to specific targets. By using antibodies which bind only to EpCAM, we ensure that the beads only stick to CTCs. When a magnet is applied, the CTCs move to the magnet and the normal blood cells are washed away.

'We can then study the captured cells in the microscope to understand if the cell really is cancerous. By sequencing the cell’s DNA we can discover other features, such as whether the cancer might be vulnerable to particular drugs. For this reason, even if a person has already been diagnosed with cancer, studying their CTCs could be an important way to make sure that they get the best treatment.'

This technique has great diagnostic potential, as it only requires a standard blood sample from the patient. Yet current methods fail to catch CTCs whose surface contains low levels of markers such as EpCAM. Jayati Jain and Gianluca Veggiani in Dr Howarth's group investigated ways of ensuring that CTCs with fewer surface markers were still picked up by the magnetic beads. This was recently published in the journal Cancer Research.

'We showed that it makes a huge difference to use antibodies with the best binding affinity for their target,' says Dr Howarth. 'For imaging cancer cells, moderate binding affinity is okay, but for isolating cancer cells, there is a force from the magnet pulling the antibody off its target and so only the best antibodies survive.'

The 'binding affinity' between an antibody and its target determines how strongly they are held together. Antibodies with higher binding affinities provide stronger links between CTCs and magnetic beads, so fewer beads will be torn from CTCs when magnetic fields are applied. As a result, more CTCs end up in the final isolated sample.

Another problem with isolating CTCs is that the surface markers which the antibodies must bind to are not simply static.

'Surface markers like EpCAM in the membrane of the cell are moving in a "sea" of lipids and cholesterol,' explains Dr Howarth. 'Cholesterol plays an important role in the physical properties of the cell membrane, affecting its fluidity, elasticity and integrity. We found that the cell’s cholesterol level was crucial to how sensitively the cell could be isolated by the magnetic beads.

'Feeding cells extra cholesterol for an hour meant that even cells with low EpCAM levels were caught. It's worth bearing in mind that all of this is done to blood samples after they have been taken from the patient – we're not talking about pumping people full of cholesterol!'

If enhanced CTC isolation techniques could be rolled out nationwide, cancers could potentially be identified years earlier than they are currently. A recent survey found that around a quarter of cancers in the UK are only diagnosed when the symptoms are so severe that patients are admitted to A&E.

'Using the information we gained about cell isolation, we could capture cancer cells expressing lower levels of distinguishing marker than before,' according to Dr Howarth. 'As the next step we are going on to explore, through collaboration with the Oxford Cancer Research Centre, how our enhanced technique will affect the ability to find CTCs in breast cancer patients and understand the changes happening during the course of the disease. In the long term, we hope that this approach will help searching for CTCs to become a standard tool in looking for early signs of cancer in the most susceptible populations.

'It's worth emphasizing that our modification of this technology has a long way to go before we see it in clinical diagnosis. Clinics in the US already use magnetic isolation techniques, but only to detect cancer recurrence rather than for the initial diagnosis. We need to test our enhanced techniques on the blood samples of real cancer patients to assess their clinical value.

'We must also improve our understanding of CTCs, so that clinicians can reliably identify them under a microscope. With typical current approaches, a few percent of samples give a 'false positive', because some normal cells look like CTCs. In several years, if we could address these issues, CTC isolation could be a powerful and cost-effective tool for primary diagnosis of cancer.'

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Seeking the Right Prescription in Fight Against Antibiotic Resistance
Researchers at the University of Oxford have received funding to look at ways to improve the prescribing of antibiotics.
Monday, November 23, 2015
£17M Project Launched to Develop HIV Vaccine
A new €23 million (£17 million) initiative to accelerate the search for an effective HIV vaccine has begun.
Wednesday, November 11, 2015
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Tuesday, November 10, 2015
Mini DNA Sequencer’s Data Belies its Size
A miniature DNA sequencing device that plugs into a laptop and was developed by Oxford Nanopore has been tested by an open, international consortium, including Oxford University researchers.
Tuesday, October 20, 2015
Microbe Artwork Shows The Limits Of Antibiotics
An Oxford University research fellow has been creating art using bacteria found in the human gut and harvested from faecal samples.
Tuesday, September 29, 2015
Funding Boost for Diabetes Research
Programme of research could be a game-changer for people with Type 1 diabetes and insulin-dependent Type 2 diabetes.
Friday, July 24, 2015
Ebola Vaccine Trial Begins in Senegal
A clinical trial to evaluate an Ebola vaccine has begun in Dakar, Senegal, after initial research started at the Jenner Institute, Oxford University.
Thursday, July 16, 2015
New Insight into Recombination and Sex Chromosomes
Not only does the platypus have some odd physical features, an updated version of its genome has also underscored the unusual genetic characteristics that it harbors.
Tuesday, May 12, 2015
Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
Oxford Vaccine Group Begins First Trial of New Ebola Vaccine
Oxford University doctors and scientists are starting the first safety trial of an experimental preventative Ebola vaccine regimen being developed by the Janssen Pharmaceutical Companies of Johnson & Johnson (Janssen).
Wednesday, January 07, 2015
New Vaccine Generates Strong Immune Response Against Hepatitis C
A new hepatitis C vaccine has shown promising results in an early clinical trial at Oxford University, generating strong and broad immune responses against the virus causing the disease.
Friday, November 07, 2014
Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
A-maize-ing Double Life of a Genome
Study findings could help current efforts to improve existing crop varieties.
Tuesday, July 15, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Antibiotics on Our Plates 'Could Lead to Health Catastrophe'
Two medical experts from The University of Queensland are urging China to curb its use of antibiotics in animals to avoid what could be a ‘major health catastrophe’ for humans.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos