Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Solve the 3D Crystal Structure of One of the Most Important Human Proteins

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Discovery of the atomic structure of a ligand-free g protein-coupled receptor (GPCR) will help design more effective drugs.

A research team at Weill Cornell Medical College has solved the 3D crystal structure of a member protein in one of the most important classes of human proteins — the G protein-coupled receptors (GPCRs). These types of proteins latch on to and transmit chemical signals from outside the cell to the inside, and half of all drugs on the market today work by ether inhibiting or activating GPCRs.

The discovery, detailed in Nature Structural & Molecular Biology, shows the crystal structure of a GPCR — the beta 1-adrenergic receptor — that does not have a chemical signal or a "ligand" bound to it. The researchers say the finding will likely offer a major boost to drug development because designers can use information gleaned from the crystal structure to learn how to build new, more effective drugs.

"Now, by understanding the native structure of these receptors — which are likely very similar to each other — drug designers may be able to create therapies that are exquisitely targeted. That can produce better therapeutic results for patients while minimizing side effects," says Dr. Xin-Yun Huang, a professor of physiology and biophysics at Weill Cornell Medical College.

It was notoriously difficult to crystallize this ligand-free membrane receptor, which explains why no one has been able to solve a GPCR structure without ligands before, Dr. Huang adds. One scientist who managed to solve the structures of several GPCRs bound to their ligands, and also capture the structure of a GPCR bound to the G protein it usually activates on the inside of a cell, was awarded the 2012 Nobel Prize in Chemistry.

The atomic view of the unliganded GPCR has already offered some surprises to Dr. Huang and his Weill Cornell research team.

"No one knew what a GPCR at its starting, basic unliganded state looked like — or what to expect," he says. "We found that the ligand-free beta 1-adrenergic receptors form oligomers. Identification of this structure type is important because it may provide the structural basis for the communication among receptors, and between receptors and G proteins."

Mysterious Workings of GPCR Targeted Drugs

GPCRs are the largest group of cell surface receptors involved in signal transduction. They transmit signals from an enormous array of stimuli, everything from photons (light) to odorants, hormones, growth factors and neurotransmitters, says Dr. Huang, whose research has long focused on the GPCRs and the G proteins they activate inside a cell. The G proteins amplify and transfer the signal from GPCRs to produce a biochemical response.

This GPCR-G protein signaling system plays critical roles in various physiological processes such as cardiovascular and neurological functions, and in human diseases such as cancer. Drugs are designed to bind on the GPCRs and activate them, reduce their activity or turn their activity off. For example, the beta 1-adrenergic receptor on the outside of heart cells that Dr. Huang and his team crystallized is the target of beta-blocker drugs that slow down heart beat.

Many drugs that target GPCRs have been discovered by blindly screening large libraries of drug-like small molecules. Recently, crystal structures of GPCRs bound to ligands have helped researchers design new drugs. Drugs that latch on to the same binding site on a GPCR may work to either activate or inhibit transmission of a signal.

"It may be possible to compare the atomic structures of the ligand-free receptor in its starting state, when it is bound by a ligand that activates it and when it is bound by a ligand that inhibits it. The small differences may offer us clues to develop agents that elicit the reaction we want," says Dr. Huang.

Dr. Huang is now working to solve the 3D structure of the beta 1-adrenergic receptor linked to its partner G protein. "This may also provide a new template for designing new and more effective medications to control heart function," he says.

Co-authors of the study are Jianyuan Huang, Shuai Chen, and J. Jillian Zhang, all from the Department of Physiology and Biophysics at Weill Cornell.

The research was funded by a grant from the National Institutes of Health (HL 91525).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Id1 Gene Interferes With Immune System
Uncovering new functions of a gene implicated in cancer growth opens new therapeutic possibilities.
Thursday, April 30, 2015
New Genomic Research Amends Earlier Triple Negative Breast Cancer Finding
Previously reported molecular finding unable to be validated.
Thursday, April 16, 2015
Advance in Regenerative Medicine Could Make Reprogrammed Cells Safer While Improving Their Function
Finding suggests the potential to repair a patients' organs using cells from ailing tissue.
Monday, August 05, 2013
Cocaine Vaccine Passes Key Testing Hurdle
New anti-cocaine vaccine research shows drug can't reach the brain, human clinical trials on the horizon.
Monday, May 13, 2013
New Method Developed to Expand Blood Stem Cells for Bone Marrow Transplant
Research shows fewer donor cells may be needed for transplantation and bone marrow banking may be possible.
Thursday, March 28, 2013
Joint Clinical Trials Office Launched
Weill Cornell Medical College and NewYork-Presbyterian Hospital launched the new Joint Clinical Trials Office at NewYork-Presbyterian/Weill Cornell Medical Center and Weill Cornell Medical College.
Friday, February 01, 2013
Two Genes are Important Key to Regulating Immune Response
A research team at Weill Cornell Medical College has identified two genes that may be crucial to the production of an immune system cytokine called interleukin-10.
Wednesday, January 09, 2008
Stem Cells in Adult Testes Provide Alternative to Embryonic Stem Cells for Organ Regeneration
Isolation of specialized subsets of spermatogonial stem cells help generate a wide range of cell and tissue types, Weill Cornell team reports.
Friday, September 21, 2007
Weill Cornell Medical College Team Identifies Potential new Cancer Drug Target
Weill Cornell researchers have uncovered two new potential points of vulnerability on a key cancer-promoting protein, called XIAP.
Wednesday, June 27, 2007
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!