Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Seeing Through HIV's Disguises

Published: Friday, March 01, 2013
Last Updated: Friday, March 01, 2013
Bookmark and Share
Researchers identify 25 human proteins that may be crucial for HIV-1 infection and survival.

Studying HIV-1, the most common and infectious HIV subtype, Johns Hopkins scientists have identified 25 human proteins “stolen” by the virus that may be critical to its ability to infect new cells. HIV-1 viruses capture many human proteins from the cells they infect but the researchers believe these 25 proteins may be particularly important because they are found in HIV-1 viruses coming from two very different types of infected cells. A report on the discovery, published online in the Journal of Proteome Research on Feb. 22, could help in building diagnostic tools and novel treatment strategies to fight HIV infection.

When a new HIV particle emerges from an infected human cell, it wraps itself in membrane and proteins from the host cell, effectively disguising itself from the immune system’s sentinels. Scientists believe that some of these proteins are specifically “chosen” by the virus in order to enhance its ability to survive, while other proteins may be just randomly caught up in the viral packaging.

“Human proteins incorporated into viruses could potentially be used to find, and selectively kill, cells harboring HIV, but the problem is that HIV can steal hundreds of different proteins unique to each cell type that it infects, leaving too many targets for researchers and drug companies to chase after,” according to David Graham, Ph.D., the senior author of the study report and assistant professor of molecular and comparative pathobiology at the Johns Hopkins University School of Medicine. The new research, he says, narrows the target pool to a small number of proteins that may be most important for HIV infection and survival.

HIV infects several types of cells throughout the body, most notably CD4+ T-cells and macrophages, both major parts of the immune system. Graham and his team suspected that a comparison of human proteins incorporated into HIV particles from different cell types could lead them to the human proteins important to the virus’ disease activity.

After isolating HIV-1 particles from lab-grown human CD4+ T-cells, Graham and his team used powerful protein sequencing and bioinformatics tools to identify all of the associated human proteins. They then used the same bioinformatics tools to re-analyze protein content information from HIV-1 particles isolated from lab-grown human macrophages, data previously published by another group of researchers.

With the help of sophisticated computing, the team identified 279 proteins taken up by HIV-1 particles from one or the other cell type. Of these, only 25 were shared by viruses from both cell types.

One protein the research team identified that could be particularly important to diagnosis and treatment is CD44, because it appears to be the only one of the 25 capable of binding to other cells. It helps the viruses attach themselves to sites of inflammation. Graham suggests that “this makes a lot of sense for a virus that likes to infect T-cells and macrophages because both types of cells migrate to sites of inflammation to help out. Little do they know that HIV viruses are lying in wait.”

Other authors of the report include Michael Linde, David Colquhoun, Ceereena Mohien, Thomas Kole, Veronica Aquino and the late Robert Cotter of the Johns Hopkins University School of Medicine; Nathan Edwards of Georgetown University; and James Hildreth from the University of California, Davis.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Wednesday, April 27, 2016
Hepatitis C Virus Testing Guidelines Miss Too Many Cases
Urban emergency departments a good place to enact universal screening for adults.
Friday, April 15, 2016
How Cancer Stem Cells Thrive When Oxygen Is Scarce
Scientists from The John Hopkins University show cancer stem cells thrive in low oxygen environments using similar mechanisms to embryonic stem cells.
Wednesday, March 30, 2016
Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections
NIH-funded project aims for fast identification and destruction of deadly bacteria.
Monday, April 27, 2015
Triple-Negative Breast Cancer Immune Therapy
Experimental immune therapy tested in preliminary study of women with triple-negative breast cancer.
Tuesday, April 21, 2015
A New Tool for Understanding ALS: Patients’ Brain Cells
Researchers create a free public library of versatile stem cells from ALS patients.
Thursday, April 16, 2015
Tumor-Only Genetic Sequencing May Misguide Cancer Treatment in Nearly Half of All Patients
Johns Hopkins scientists say the genetic code of tumors must be compared to patients’ noncancer genome to get a true picture.
Thursday, April 16, 2015
New Cancer-Fighting Strategy Would Harden Cells to Prevent Metastasis
Potential drug for pancreatic cancer now being tested in animals.
Thursday, January 22, 2015
Training the Immune System to Destroy Cure-Defying Mutant HIV
This study reveals the reason behind the failure of luring HIV out of hiding, and charts a therapeutic strategy to eradicate mutant HIV-infected cells.
Thursday, January 08, 2015
New Genetic and Epigenetic Contributors to Diabetes Identified
Comparison of fat cells in mice and men hints at how genes and environment conspire to produce disease.
Wednesday, January 07, 2015
When DNA Gets Sent to Time-Out
New details revealed in the coordinated regulation of large stretches of DNA.
Tuesday, January 06, 2015
CRISPR Shows Promise in Engineering Human Stem Cells
Johns Hopkins study could advance use of stem cells for treatment and disease research.
Monday, January 05, 2015
Multiple Allergic Reactions Traced To Single Protein
Points to new strategy to reduce allergic responses to many medications.
Thursday, December 18, 2014
Brain Inflammation A Hallmark Of Autism
Johns Hopkins study is largest so far of gene expression in autism brains.
Thursday, December 11, 2014
Up-close Look at Cancer on the Move
Microscopic view of metastasis could give insight about how to keep cancer in check.
Friday, November 07, 2014
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!