Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

A New View of Transcription Initiation

Published: Monday, March 04, 2013
Last Updated: Monday, March 04, 2013
Bookmark and Share
Reading the human genome.

The human genome is contained within a vast jumble of DNA. Its 20,000 or so genes are concealed within strings of As, Ts, Gs, and Cs, and each gene must be turned on at the right time and in the right cells.

For the first time, scientists have glimpsed the cellular machinery that accomplishes that feat, as it assembles directly on the DNA and readies it for transcription into RNA, the first step in protein production.

“We’ve described the assembly of the machinery that allows the human genome to be read one gene at a time. This molecular step is critical is transforming DNA ultimately into the protein repertoire that carries out all the functions of a cell,” says Eva Nogales, the Howard Hughes Medical Institute investigator who led the research. Nogales and her team published their work online in the journal Nature on February 27, 2013.

The enzyme that carries out transcription, RNA polymerase II, is very efficient at copying the information encoded in DNA into an RNA molecule. “But the polymerase is completely incapable of detecting the beginning of a gene,” says Nogales, whose lab is at the University of California, Berkeley.

Likewise, the polymerase cannot do its work until the two strands of the DNA double helix have been separated to reveal their sequence. To accomplish these tasks, a bulky complex of proteins called the pre-initiation complex is assembled each time transcription begins.

Together, the proteins in the pre-initiation complex find a gene’s start site, prepare the DNA, and set the polymerase on its way.

“This machinery has to find the beginning of the gene in the huge ocean of DNA that makes up the genome,” explains Nogales. Once there, it opens the double helix and positions the polymerase in exactly the right place, ensuring that transcription begins with the correct letter in the DNA code.

Researchers knew that it takes a core complex of at least six different factors-TATA-binding protein (TBP), TFIIA, TFIIB, TFIIE, TFIIF, and TFIIH-to initiate transcription of human genes.

Based on biochemical experiments, they knew the order in which these transcription factors arrived at the start site and joined the complex, and they had an idea of each one’s contributions to transcription initiation. But no one had actually visualized the molecules in action, so the molecular details of how they functioned remained unknown.

The main obstacle to visualizing the pre-initiation complex, Nogales says, was obtaining enough of each of its components for structural studies. Several of the components in the complex are not amenable to the techniques scientists often rely on to produce large quantities of the protein in the lab.

Instead, Nogales and her colleagues isolate those proteins directly from human cells. Because the transcription factors are not abundant inside cells, the quantities that can be purified are small.

“Things like x-ray crystallography and NMR”-common techniques for structural studies that require large amounts of protein-“were completely out of the question,” Nogales says. “That’s why very few structures of any of these intermediates have been obtained.”

Instead, they turned to a technique called cryo-electron microscopy (cryo-EM), in which samples are flash frozen and then viewed through an electron microscope. Because the proteins do not have to be crystallized, researchers see them in their native state. Further, Nogales explains, “we need very little volume at very low concentrations to do cryo-EM.”

Nogales and her team wanted to watch as the pre-initiation complex assembled at a gene’s start site, so they created a series of cryo-EM snapshots. In a test tube, they allowed a minimal form of the complex to self assemble on a strand of DNA: a cluster including TBP, TFIIA, TFIIB, and the RNA polymerase II.

They froze the complex in this state and captured images to generate a 3D structure. All the pieces in this simple form of the complex were known, so Nogales says this allowed them to confirm that their technique was consistent with previous crystallographic images. They then added TFIIF, TFIIE, and TFIIH one by one, capturing three more snapshots.

In cells, the pre-initiation complex remains on the DNA until the polymerase begins transcription and physically moves away from the start site. Before this can happen, the pre-initiation complex must use energy to open the double helix and push the DNA into the pocket of the polymerase where transcription occurs.

Nogales and her team mimicked this state in the test tube by altering the sequence of DNA on which the transcription factors and polymerase assembled, adding a short segment of RNA. “It is the equivalent of the polymerase having engaged the open DNA and started to add a few nucleotides of RNA,” Nogales explains. Again, they froze the complex and captured images with cryo-EM.

The stop-motion movie they have created from their snapshots reveals several key features. It shows, for example, how TFIIF stabilizes the complex by engaging both the polymerase and the DNA.

TFIIF was known to be important for lining the polymerase up at a gene’s start site, and the new images show how it allows the polymerase to bind to the DNA double helix, then nudges the polymerase to just the right position on the DNA.

“This initial engagement sets things in the right position, so that when TFIIH pushes on the DNA, it will be moved into the right place,” Nogales explains. It also reveals how the same factor ensures that the double helix will unwind and separate at the right place, where part of TFIIF physically inserts itself between the strands to prevent them from coming back together.

“We have seen the molecular details of how all the proteins come together and interact with each other and with the DNA, thus gaining insight into how the cell determines at which point of the DNA to start transcribing into RNA, and actually how the DNA is opened and inserted into the active site in the polymerase,” Nogales says. “But this complex is really only the beginning of the story.”

“If we want to get at what is different between one gene and another, we have to start building up even larger complexes,” she says. So far, her team has recreated the formation of the most fundamental portion of the pre-initiation complex-the part that assembles every time any human gene is transcribed. But in living cells, these proteins never act alone. The next step, Nogales says, will be to begin to add in the factors that allow the transcription machinery to recognize genes in a regulated fashion. “As genomes get bigger, their regulatory systems get more complex,” Nogales says.

That complexity, she says, enables cells to fine tune gene expression-and understanding it is essential for understanding the complexity arising from the human genome.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

One-Drop-of-Blood Reveals a Patient’s Viral History
New technology developed by Howard Hughes Medical Institute researchers makes it possible to test for current and past infections with any known human virus by analyzing a single drop of a person's blood.
Tuesday, June 09, 2015
A Crisper View of DNA-Snipping Enzyme
HHMI scientists have created a portrait of a DNA-snipping protein called Cas9, a powerful research tool used in many labs for genome editing.
Saturday, February 08, 2014
Spontaneous Mutations Play a Key Role in Congenital Heart Disease
New research shows that about 10 percent of these defects are caused by genetic mutations that are absent in the parents of affected children.
Monday, May 13, 2013
Stash of Stem Cells Found in a Human Parasite
New findings were published online on February 20, 2013, in the journal Nature.
Tuesday, February 26, 2013
Search for Epigenetic Decoder in Brain Cells Leads Scientists to Rett Syndrome
New analysis suggests that MeCP2 recognizes 5hmC in the brain and facilitates activation of the genes.
Monday, December 31, 2012
Scientists Find Mechanism that Triggers Immune Responses to DNA
HHMI scientists have discovered the molecular pathway outside a cell’s nucleus in the cytosol.
Monday, December 24, 2012
Erin O’Shea Named Vice President and Chief Scientific Officer at HHMI
O’Shea to begin her new duties part-time in January 2013 and transition to full-time in July 2013.
Monday, December 03, 2012
Susan Desmond-Hellmann Elected as HHMI Trustee
Desmond-Hellmann becomes one of 11 Trustees of the Institute.
Thursday, November 08, 2012
HHMI’s Robert Lefkowitz Awarded 2012 Nobel Prize in Chemistry
Robert Lefkowitz and Brian K. Kobilka are the recipients of the 2012 Nobel Prize in Chemistry for studies of G-protein coupled receptors.
Thursday, October 11, 2012
Analysis of Stickleback Genome Sequence Catches Evolution in Action
Reuse of key genes is a common theme, as reported by scientists at the Howard Hughes Medical Institute.
Thursday, April 05, 2012
Autism Gene Screen Highlights Protein Network for Howard Hughes Medical Institute Scientists
Over the past decade, scientists have added many gene mutations to the list of potential risk factors for autism spectrum disorders -- but researchers still lack a definitive explanation of autism’s cause.
Thursday, April 05, 2012
Scientists Trace Origin of Recent Cholera Epidemic in Haiti
The finding supports the notion that the cholera bacteria fueling the outbreak arrived on the island via recent visitors.
Friday, December 10, 2010
Protein-Folding Game Taps Power of Worldwide Audience to Solve Difficult Puzzles
Extended efforts could pay off in the design of new proteins that help fight disease, sequester carbon, or clean up the environment.
Monday, August 09, 2010
New Tool Illuminates Connections Between Stem Cells and Cancer
HHMI researchers have a new tool to understand how cancers grow - and with it a new opportunity to identify novel cancer drugs.
Monday, February 22, 2010
Crash-Test Reveals DNA Traffic Control
Researchers have discovered that when DNA-copying enzymes run head-on into oncoming traffic, they kick the obstacles out of their way.
Friday, January 29, 2010
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos