Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Computational Center Will Study the Past and Future of Knowledge

Published: Monday, March 04, 2013
Last Updated: Monday, March 04, 2013
Bookmark and Share
Templeton Foundation awards $5.2 million for Computation Institute's Metaknowledge Network.

The march of science is stumbling and easily sidetracked, fraught with bias, fads and dead ends. A new research initiative based at the University of Chicago and the Computation Institute will use the latest computational tools to scrutinize this imperfect path and better understand how knowledge was and is created. Such understanding could transform the process of research, calling out past missteps while revealing unanticipated new directions for the future.

With a $5.2 million grant from the John Templeton Foundation, the new Metaknowledge Network brings together social scientists, computer scientists and domain experts from several disciplines to explore how knowledge emerges, thrives, evolves and dies out. The lessons learned can be used to accelerate discovery across fields, as scientists develop a deeper understanding of why we have the knowledge we have—and why certain promising questions were left unasked or unanswered.

“We have an opportunity to create a really rich science of science, one that builds on novel computational tools to exploit the increasingly widespread digital traces of the research process,” said James Evans, director of the center, associate professor of sociology, and Computation Institute Fellow.

Metaknowledge means “knowledge about knowledge”—the study of how different scientific questions and ideas appear, mature and potentially take root. The idealistic view of research is that it proceeds in unbiased, empirical steps. But scientists faced with an almost limitless number of potential questions may also choose a research path based on non-empirical factors such as available resources or equipment, professional and educational networks, access to previous findings and the biases and trends of their field.

Until now, the fingerprints of these external influences have been difficult to detect with the naked eye.

“Most of what we know comes from putting science under the microscope, from deep historical or ethnographic study,” said Jacob Foster, assistant professor of sociology and a member of the Metaknowledge Network.

But the current explosion of digitally available text, including journal publications, books, patents and news articles, makes it possible for the first time in history to study the dynamics that shape scientific research at scale, as the latest computational tools can capture some of the richness of these insights.

“The central idea is, how can we take these huge data resources associated with science today—all the publications, preprints and data that are floating around—and use that to figure out why people ask the questions that they ask?” Evans said. “And how can this knowledge lead us to ask better questions?”

Initial core projects within the Metaknowledge Network will examine why some theories are more popular than others, what strategies are most likely to produce groundbreaking research and how deeply held notions and assumptions shape what scientists study.

For example, preliminary work by network collaborators found that award-winning scientists were more likely to attempt riskier projects, which were subsequently cited more often by their peers. Other work identified biases in the production and analysis of data from many fields, and demonstrated how previous findings reported in the biomedical literature can distort how scientists interpret their own independent results, a kind of publication peer pressure.

In a time of tight research budgets, these insights can help direct funding to the most promising scholars and projects, rather than merely the most popular or prominent. A combination of text-mining and machine-learning tools also can potentially provide a continuously refreshed "sentinel" on a body of research, updating as new articles are published and suggesting new high-impact hypotheses to be explored.

“For science policy and the business of innovation, we could be much more rational about how we search through the enormous space of questions,” Evans said. “And that includes being more creative—asking new, unexpected questions.”

To support the network's research, a Knowledge Lab will be established at the Computation Institute on the UChicago campus for researchers to collaborate with computer programmers. The network also will build an online Metaknowledge Portal for sharing software, data and publications. Databases and results generated by the projects will be made open source and available to the public where legally possible.

The inaugural members of the Metaknowledge Network include researchers from the University of Chicago, Argonne National Laboratory, Stanford University, Northwestern University, the University of California, the University of Washington, the University of Wisconsin, Princeton University and Harvard University.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Enormous Genetic Variation May Shield Tumors from Treatment
Debate over Darwinian selection vs. random mutations emerges at the tumor level.
Wednesday, November 11, 2015
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Monday, November 09, 2015
Protein Aggregation After Heat Shock Is An Organized, Reversible Response
New study finds protein aggregation after heat exposure is a reversible cellular process, not unrecoverable damage from misfolding.
Friday, September 11, 2015
New Form of DNA Modification May Carry Inheritable Information
Scientists have described the surprising discovery and function of a new DNA modification in insects, worms and algae.
Friday, May 08, 2015
Shape-Shifting Molecule Tricks Viruses Into Mutating Themselves To Death
Study uses two-dimensional infrared spectroscopy to help distinguish between normal and shape-shifted structures.
Thursday, April 16, 2015
Drug-Development Grants Focus On Sleep Apnea, Asthma Research
NIH grants awarded to two University of Chicago research teams will help to develop novel treatments for sleep apnea and asthma.
Tuesday, January 27, 2015
Gut Bacteria that Protect Against Food Allergies Identified
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.
Wednesday, August 27, 2014
Researchers Identify ‘Fat Gene’ Associated with Obesity
Mutations within the gene FTO have been implicated as the strongest genetic determinant of obesity risk in humans, but the mechanism behind this link remained unknown.
Monday, March 17, 2014
Autism and Intellectual Disability Incidence Linked with Environmental Factors
Although autism and intellectual disability have genetic components, environmental causes are thought to play a role.
Monday, March 17, 2014
Staphylococcus Aureus Bacteria Turns Immune System Against Itself
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, including the antibiotic-resistant strain MRSA.
Friday, December 13, 2013
Staphylococcus aureus Bacteria Turns Immune System Against Itself
Scientists use primary human immune defense mechanism to destroy white blood cells.
Thursday, December 05, 2013
Genetic Analysis Reveals Insights into Genetics of OCD, Tourette’s
Major differences between the genetic makeup of obsessive-compulsive disorder and Tourette’s syndrome, providing the first direct confirmation that both are highly heritable.
Tuesday, November 05, 2013
Computer Modeling Shows Crucial Function of Water Molecules in Proteins
Scientists used molecular simulations that modeled a potassium channel and its immediate cellular environment, atom for atom.
Wednesday, July 31, 2013
Israel-Chicago Partnership Targets Water Resource Innovations
Partnership is to create new materials and processes for making clean, fresh drinking water more plentiful and less expensive by 2020.
Monday, June 24, 2013
Multiple Research Teams Unable to Confirm High-Profile Alzheimer’s Study
Teams of highly respected Alzheimer’s researchers failed to replicate what appeared to be breakthrough results for the treatment of this brain disease when they were published last year in the journal Science.
Friday, May 24, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos