Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Supports Promise of Cell Therapy for Bowel Disease

Published: Monday, March 04, 2013
Last Updated: Monday, March 04, 2013
Bookmark and Share
Researchers have identified a special population of adult stem cells in bone marrow that have the natural ability to migrate to the intestine and produce intestinal cells.

Up to 1 million Americans have IBD, which is characterized by frequent diarrhea and abdominal pain. IBD actually refers to two conditions - ulcerative colitis and Crohn's disease - in which the intestines become red and swollen and develop ulcers, probably as the result of the body having an immune response to its own tissue.

While there is currently no cure for IBD, there are drug therapies aimed at reducing inflammation and preventing the immune response. Because these therapies aren't always effective, scientists hope to use stem cells to develop an injectable cell therapy to treat IBD.

The research findings are reported online in the FASEB Journal (the journal of the Federation of American Societies for Experimental Biology) by senior researcher Graca Almeida-Porada, M.D., Ph.D., professor of regenerative medicine at Wake Forest Baptist's Institute for Regenerative Medicine, and colleagues.

The new research complements a 2012 report by Almeida-Porada's team that identified stem cells in cord blood that are involved in blood vessel formation and also have the ability to migrate to the intestine.

"We've identified two populations of human cells that migrate to the intestine - one involved in blood vessel formation and the other that can replenish intestinal cells and modulates inflammation," said Almeida-Porada. "Our hope is that a mixture of these cells could be used as an injectable therapy to treat IBD."

The cells would theoretically induce tissue recovery by contributing to a pool of cells within the intestine. The lining of the intestine has one of the highest cellular turnover rates in the body, with all cell types being renewed weekly from this pool of cells, located in an area of the intestine known as the crypt.

In the current study, the team used cell markers to identify a population of stem cells in human bone marrow with the highest potential to migrate to the intestine and thrive. The cells express high levels of a receptor (ephrin type B) that is involved in tissue repair and wound closure.

The cells also known to modulate inflammation were injected into fetal sheep at 55 to 62 days gestation. At 75 days post-gestation, the researchers found that most of the transplanted cells were positioned in the crypt area, replenishing the stem cells in the intestine.

"Previous studies in animals have shown that the transplantation of bone-marrow-derived cells can contribute to the regeneration of the gastrointestinal tract in IBD," said Almeida-Porada. "However, only small numbers of cells were successfully transplanted using this method. Our goal with the current study was to identify populations of cells that naturally migrate to the intestine and have the intrinsic ability to restore tissue health."

Almeida-Porada said that while the two studies show that the cells can migrate to and survive in a healthy intestine, the next step will be to determine whether they can survive in an inflamed intestine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nanotechnology Detects Biomarkers of Cancer
Researchers at Wake Forest Baptist Medical Center have developed a new technology to detect disease biomarkers in the form of nucleic acids, the building blocks of all living organisms.
Monday, February 15, 2016
Neural-like Stem Cells from Muscle Tissue May Hold Key to Cell Therapies for Neurodegenerative Diseases
Scientists at Wake Forest Baptist Medical Center have taken the first steps to create neural-like stem cells from muscle tissue in animals.
Tuesday, October 16, 2012
Research Suggests Promise of Cell Therapy for Bowel Disease
New research shows that a special population of stem cells found in cord blood has the innate ability to migrate to the intestine and contribute to the cell population there.
Friday, September 21, 2012
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Can We Break the Link Between Obesity and Diabetes?
Columbia University researchers identify a key molecule involved in the development of type 2 diabetes.
Fungi – A Promising Source Of Chemical Diversity
Moulds and plants share similar ways in alkaloid biosynthesis .
How Prions Kill Neurons: New Culture System Shows Early Toxicity to Dendritic Spines
Boston University researchers have developed a cell culture system to study prions.
Great Migration and African-American Genomic Diversity
Study examines genetic data to analyze regional differences in ancestry.
Faster, More Efficient CRISPR Editing
UC Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the new gene-editing tool.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!