Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Seven Genetic Risk Factors Found to be Associated with Common Eye Disorder

Published: Tuesday, March 05, 2013
Last Updated: Tuesday, March 05, 2013
Bookmark and Share
Funded by NIH, report represents the most comprehensive study of AMD genetics.

An international group of researchers has discovered seven new regions of the human genome - called loci - that are associated with increased risk of age-related macular degeneration (AMD), a leading cause of blindness.

The AMD Gene Consortium, a network of international investigators representing 18 research groups, also confirmed 12 loci identified in previous studies.

The findings are reported online in the journal Nature Genetics. Supported by the National Eye Institute (NEI), a part of the National Institutes of Health, the study represents the most comprehensive genome-wide analysis of genetic variations associated with AMD.

"This compelling analysis by the AMD Gene Consortium demonstrates the enormous value of effective collaboration," said NEI Director Paul A. Sieving, M.D., Ph.D.

Sieving continued, "Combining data from multiple studies, this international effort provides insight into the molecular basis of AMD, which will help researchers search for causes of the disease and will inform future development of new diagnostic and treatment strategies."

AMD affects the macula, a region of the retina responsible for central vision. The retina is the layer of light-sensitive tissue in the back of the eye that houses rod and cone photoreceptor cells.

Compared with the rest of the retina, the macula is especially dense with cone photoreceptors and is what humans rely on for tasks that require sharp vision, such as reading, driving, and recognizing faces.

As AMD progresses, such tasks become more difficult and eventually impossible. Some kinds of AMD are treatable if detected early, but no cure exists. An estimated 2 million Americans have AMD.

Scientists have shown that age, diet, and smoking influence a person's risk of developing AMD. Genetics also plays a strong role. AMD often runs in families and is more common among certain ethnicities, such as people of Asian or European descent.

Since the 2005 discovery (http://www.nei.nih.gov/news/statements/genes_amd.asp) that certain variations in the gene for complement factor H - a component of the immune system - are associated with major risk for AMD, research groups around the world have conducted genome-wide association studies to identify other loci that affect AMD risk.

These studies were made possible by tools developed through the Human Genome Project (http://www.genome.gov/10001772), which mapped human genes, and related projects, such the International HapMap Project (http://www.genome.gov/11511175), which identified common patterns of genetic variation within the human genome.

The AMD Gene Consortium combined data from 18 research groups to increase the power of prior analyses. The current analysis identified seven new loci near genes.

As with the previously discovered 12 loci, these seven loci are scattered throughout the genome on many different chromosomes.

"A large number of samples was needed to detect additional genetic variants that have small but significant influences on a person's disease risk," said Hemin Chin, Ph.D., NEI associate director for ophthalmic genetics, who assembled the consortium and helped coordinate the study. "By cataloging genetic variations associated with AMD, scientists are better equipped to target corresponding biological pathways and study how they might interact and change with age or other factors, such as smoking."

The consortium's analysis included data from more than 17,100 people with the most advanced and severe forms of AMD, which were compared to data from more than 60,000 people without AMD.

The 19 loci that were found to be associated with AMD implicate a variety of biological functions, including regulation of the immune system, maintenance of cellular structure, growth and permeability of blood vessels, lipid metabolism, and atherosclerosis.

"Like a map that identifies neighborhoods where the electricity has been knocked out by a storm, the AMD Gene Consortium's study effectively tagged regions within the genome where researchers are most likely to find short circuits in DNA that cause AMD," said Anand Swaroop, Ph.D., chief of the NEI Laboratory of Neurobiology and Neurodegeneration and Repair, and one of the group leaders of this consortium effort.

Swaroop continued, "Once you are in the right neighborhood, going block to block or house to house to look for downed power lines goes much faster. Likewise, by limiting their search to the 19 genomic regions identified by the AMD Gene Consortium, scientists can more efficiently search for specific genes and causative changes that play a role in AMD."

As with other common diseases, such as type 2 diabetes, an individual person's risk for getting AMD is likely determined not by one but many genes.

Further comprehensive DNA analysis of the areas around the 19 loci identified by the AMD Gene Consortium could turn up undiscovered rare genetic variants with a disproportionately large effect on AMD risk.

Discovery of such genes could greatly advance scientists' understanding of AMD pathogenesis and their quest for more effective treatments.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Tuesday, June 28, 2016
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Tuesday, June 28, 2016
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Saturday, June 25, 2016
Rates of Nonmedical Prescription Opioid Use Disorder Double in 10 Years
Researchers at NIH have found that the nonmedical use of prescription opioids has more than doubled among adults in the United States from 2001-2002 to 2012-2013.
Thursday, June 23, 2016
Peanut Allergy Prevention Strategy is Nutritionally Safe
Early-life peanut consumption does not affect duration of breastfeeding or children’s growth and nutrition.
Wednesday, June 22, 2016
NIH Launches Large Study of Pregnant Women in Areas Affected by Zika virus
Researchers at NIH and Fiocruz have begun a study to evaluate the magnitude of health risks that Zika virus infection poses to pregnant women and their developing fetuses and infants.
Wednesday, June 22, 2016
New Imaging Method May Predict Risk of Post-Treatment Brain Bleeding After Stroke
Researchers at NIH have developed technique that provides new insight into stroke.
Tuesday, June 21, 2016
Study Reveals Central Role of Endocannabinoids in Habit Formation
The new study findings point to a previously unknown mechanism in the brain that regulates the transition between goal-directed and habitual behaviors.
Tuesday, June 21, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Prevention May be Essential to Reducing Racial Disparities in Stroke
Researchers at NIH have found study provides clues to differences in stroke deaths between blacks and whites.
Friday, June 03, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Penn State, TB Alliance, and GSK Partner To Discover New Treatments For TB
A new collaboration between TB Alliance, GSK, and scientists in the Eberly College of Science seeks to find new small molecules that can be used to create antibiotics in the fight against tuberculosis (TB).
Manufactured Stem Cells To Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Faster Detection of Pathogens in the Lungs
Thanks to new molecular-based methods, mycobacterial pathogens that cause pulmonary infections or tuberculosis can now be detected much more quickly.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!