Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Yale Researchers Identify Salt as a Trigger of Autoimmune Diseases

Published: Friday, March 08, 2013
Last Updated: Friday, March 08, 2013
Bookmark and Share
For the past few decades, health officials have been reporting increases in the incidence of autoimmune diseases such as multiple sclerosis (MS).

Now researchers at Yale Medical School, Harvard Medical School and the Broad Institute have identified a prime suspect in the mystery — dietary salt.

In the March 6 issue of the journal Nature, Yale researchers showed that salt can induce and worsen pathogenic immune system responses in mice and that the response is regulated by genes already implicated in a variety of autoimmune diseases.

In accompanying papers in the same issue of Nature, researchers from Brigham and Women’s Hospital and Harvard identified the key molecular pathway involved in the response to salt, and the Broad Institute sketched out the regulatory network of genes that governs this autoimmune response.

“These are not diseases of bad genes alone or diseases caused by the environment, but diseases of a bad interaction between genes and the environment,” said Dr. David Hafler, the Gilbert H. Glaser Professor of Neurology, professor of immunobiology, chair of the Department of Neurology, and senior author of the Yale paper.

The research was inspired, in part, by an observation that eating at fast-food restaurants tended to trigger an increase in production of inflammatory cells, which are mobilized by the immune system to respond to injury or pathogens but which, in autoimmune diseases, attack healthy tissue. Researchers at Yale and colleagues in Germany led by Dominik Mueller wanted to know whether high salt content in diet might induce the destructive immune system response that is the hallmark of autoimmunity.

They found that adding salt to the diet of mice induced production of a type of T cells previously associated with autoimmune diseases and that mice on salt diets developed a more severe form of an MS animal model, experimental autoimmune encephalomyelitis.

The research at the Broad Institute, Brigham and Women’s Hospital, Harvard University, and Yale University expands the understanding of how one type of immune cell — known as a T helper 17 or Th17 cell — develops, and how its growth influences the development of other kinds of cells involved in the immune system. Reconstruction of this molecular circuitry confirmed the surprising role of salt, said the researchers.

“The question we wanted to pursue was: How does this highly pathogenic, pro-inflammatory T cell develop?” said Vijay Kuchroo, a senior scientist at Brigham and Women’s Hospital and a Broad Institute associate member. Kuchroo is also the Wasserstrom Professor of Neurology at Harvard Medical School and co-director of the Center for Infection and Immunity at Biomedical Research Institutes. “Once we have a more nuanced understanding of the development of the pathogenic Th17 cells, we may be able to pursue ways to regulate them or their function.”

“Humans were genetically selected for conditions in sub-Saharan Africa, where there was no salt,” Hafler said. “Today, Western diets all have high salt content and that has led to increase in hypertension and perhaps autoimmune disease as well.”

Hafler noted that all test-tube cell biology is performed based on the salt levels found in blood and not in the tissues where immune cell ultimately travel to fight infections. That may have been a reason salt’s role in autoimmunity has gone undetected.

“We may have been using the wrong concentrations of salt in our experiments for the past half-century,” Hafler said. “Nature did not want immune cells to become turned on in the pipeline, so perhaps blood salt levels are inhibitory.”

Patient trials to assess affects of salt on autoimmune diseases are being planned..

“The value in doing an unbiased analysis is that we’re able to understand a lot more about the molecular biology at play and put forth a completely novel process,” said Aviv Regev, a Broad Institute core member and an associate professor of biology at MIT. Regev is also an Early Career Scientist at Howard Hughes Medical Institute and the director of the Klarman Cell Observatory at the Broad.

Hafler is not waiting with his own patients.

“I already recommend that my patients use a low-salt, low-fat diet,” he said


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Tuesday, December 06, 2016
Unexpected Epigenetic Enzymes Role in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Tuesday, December 06, 2016
Soil Carbon Release Might Equal U.S. Emissions
Research suggests 55M tons of carbon will be release from soils by 2050, 17% higher than prjected emissions.
Tuesday, December 06, 2016
Possible Treatment for Rare Vascular Disease
Researchers manage to reverse hereditary haemorrhagic telangiectasia in mice, if successful in humans it could lead to improved treatment for the disease.
Wednesday, November 30, 2016
Precision Medicine for Rheumatoid Arthritis
Researchers identify gene mechanism that increases rheumatoid arthritis risk in susceptable individuals.
Tuesday, November 22, 2016
New Model for Studying Alzheimer’s Disease
Researchers develop new model for the study early-stage Alzheimer's, focusing on a particular protein.
Monday, November 21, 2016
Key Protein That Binds to LDL Cholesterol Identified
Researchers have identified a protein that is involved in the buildup of cholesterol in blood vessels.
Monday, November 21, 2016
Forensics is Boosting the Battle Against Wildlife Trade
From rapid genetic analysis to spectrography, the new advances in forensics offer promise in stopping the trafficking in endangered species.
Monday, November 14, 2016
Study Pinpoints Protein That Detects Radiation Damage
Researchers identify mechanism of radiation-induced tissue damage involving a particular protein
Monday, November 14, 2016
Genetic Repurposing
New study suggests that a mammalian bone and muscle gene may be repurposed to fuel cognition in humans
Monday, November 14, 2016
Editing Gene Mutations in Anemia
Researchers successfully use a new gene editing strategy to correct mutations that cause a form of anemia.
Wednesday, October 26, 2016
Genes Help Track Odd Migrations of Zika Mosquitoes
Study shows that mosquitoes carrying Zika virus or Dengue fever a genetically distinct around the world.
Wednesday, October 26, 2016
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Thursday, October 20, 2016
Alzheimer’s-Linked Protein May Play Role in Schizophrenia
Researchers suggests a protein linked to cognitive decline in Alzheimer's also plays a role in genetic predisposition to schizophrenia.
Wednesday, October 19, 2016
Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Wednesday, October 19, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Soil Carbon Release Might Equal U.S. Emissions
Research suggests 55M tons of carbon will be release from soils by 2050, 17% higher than prjected emissions.
Inspiring Futuristic Innovation: Brain ‘Organoids’
Scientists create artificial brains, providing an advanced model for studying brain tumour development.
‘NoBody,’ a Microprotein On a Mission
Researchers identify over 400 microproteins encoded in the human genome, one of which clears unneeded genetic material inside cells.
Unexpected Epigenetic Enzymes Role in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!