Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Yale Researchers Identify Salt as a Trigger of Autoimmune Diseases

Published: Friday, March 08, 2013
Last Updated: Friday, March 08, 2013
Bookmark and Share
For the past few decades, health officials have been reporting increases in the incidence of autoimmune diseases such as multiple sclerosis (MS).

Now researchers at Yale Medical School, Harvard Medical School and the Broad Institute have identified a prime suspect in the mystery — dietary salt.

In the March 6 issue of the journal Nature, Yale researchers showed that salt can induce and worsen pathogenic immune system responses in mice and that the response is regulated by genes already implicated in a variety of autoimmune diseases.

In accompanying papers in the same issue of Nature, researchers from Brigham and Women’s Hospital and Harvard identified the key molecular pathway involved in the response to salt, and the Broad Institute sketched out the regulatory network of genes that governs this autoimmune response.

“These are not diseases of bad genes alone or diseases caused by the environment, but diseases of a bad interaction between genes and the environment,” said Dr. David Hafler, the Gilbert H. Glaser Professor of Neurology, professor of immunobiology, chair of the Department of Neurology, and senior author of the Yale paper.

The research was inspired, in part, by an observation that eating at fast-food restaurants tended to trigger an increase in production of inflammatory cells, which are mobilized by the immune system to respond to injury or pathogens but which, in autoimmune diseases, attack healthy tissue. Researchers at Yale and colleagues in Germany led by Dominik Mueller wanted to know whether high salt content in diet might induce the destructive immune system response that is the hallmark of autoimmunity.

They found that adding salt to the diet of mice induced production of a type of T cells previously associated with autoimmune diseases and that mice on salt diets developed a more severe form of an MS animal model, experimental autoimmune encephalomyelitis.

The research at the Broad Institute, Brigham and Women’s Hospital, Harvard University, and Yale University expands the understanding of how one type of immune cell — known as a T helper 17 or Th17 cell — develops, and how its growth influences the development of other kinds of cells involved in the immune system. Reconstruction of this molecular circuitry confirmed the surprising role of salt, said the researchers.

“The question we wanted to pursue was: How does this highly pathogenic, pro-inflammatory T cell develop?” said Vijay Kuchroo, a senior scientist at Brigham and Women’s Hospital and a Broad Institute associate member. Kuchroo is also the Wasserstrom Professor of Neurology at Harvard Medical School and co-director of the Center for Infection and Immunity at Biomedical Research Institutes. “Once we have a more nuanced understanding of the development of the pathogenic Th17 cells, we may be able to pursue ways to regulate them or their function.”

“Humans were genetically selected for conditions in sub-Saharan Africa, where there was no salt,” Hafler said. “Today, Western diets all have high salt content and that has led to increase in hypertension and perhaps autoimmune disease as well.”

Hafler noted that all test-tube cell biology is performed based on the salt levels found in blood and not in the tissues where immune cell ultimately travel to fight infections. That may have been a reason salt’s role in autoimmunity has gone undetected.

“We may have been using the wrong concentrations of salt in our experiments for the past half-century,” Hafler said. “Nature did not want immune cells to become turned on in the pipeline, so perhaps blood salt levels are inhibitory.”

Patient trials to assess affects of salt on autoimmune diseases are being planned..

“The value in doing an unbiased analysis is that we’re able to understand a lot more about the molecular biology at play and put forth a completely novel process,” said Aviv Regev, a Broad Institute core member and an associate professor of biology at MIT. Regev is also an Early Career Scientist at Howard Hughes Medical Institute and the director of the Klarman Cell Observatory at the Broad.

Hafler is not waiting with his own patients.

“I already recommend that my patients use a low-salt, low-fat diet,” he said

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Thursday, August 27, 2015
Shedding Light On Century-Old Biochemical Mystery
Yale scientists have used magnetic resonance measurements to show how glucose is metabolized in yeast to answer the puzzle of the “Warburg Effect.”
Thursday, August 20, 2015
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
Wednesday, July 08, 2015
Yale Team finds why BRCA Gene Resists Cancer Treatment
The University researchers have discovered why a key molecular assistant is crucial to the function of the BRCA2 gene.
Tuesday, July 07, 2015
New Type of Drug Can Target All Disease-causing Proteins
Current drugs block the actions of only about a quarter of known disease-causing proteins, but Yale University researchers have developed a technology capable of not just inhibiting, but destroying every protein it targets.
Monday, June 15, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Researchers Solve Multiple Sclerosis Puzzle
Yale study shows the role that T cells play in MS.
Monday, May 18, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
New Tool To Explore Mysteries Of The Immune System
Yale scientists use CyTOF to study a range of conditions.
Monday, April 20, 2015
A Faster, Less Expensive Way To Analyze Gene Activity
Yale researchers have devised a method that could reduce the time and cost of analyzing gene activity.
Tuesday, March 03, 2015
Li Ka Shing Foundation Renews Support for Yale Stem Cell Center
New generous grant of $1.86 million from LKSF to support education and healthcare initiatives.
Saturday, February 28, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Yale Team Identifies Key Process In Brain Development
miR-107 shown to play essential role in regulating normal brain development.
Friday, February 06, 2015
Cold Virus Replicates Better At Cooler Temperatures
Study shows that the immune response to rhinovirus is influenced by temperature.
Tuesday, January 06, 2015
Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Removing 62 Barriers to Pig–to–Human Organ Transplant in One Fell Swoop
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
New Therapy Reduces Symptoms of Inherited Enzyme Deficiency
A phase three clinical trial of a new enzyme replacement medication, sebelipase alfa, showed a reduction in multiple disease-related symptoms in children and adults with lysosomal acid lipase deficiency, an inherited enzyme deficiency that can result in scarring of the liver and high cholesterol.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
First Results Describing Sick Sea Star Immune Response
Though millions of sea stars along the West Coast have perished in the past several years from an apparent wasting disease, scientists still don’t know why.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos