Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Improper Protein Digestion in Neurons Identified as a Cause of Familial Parkinson’s

Published: Friday, March 08, 2013
Last Updated: Friday, March 08, 2013
Bookmark and Share
Researchers at CUMC and others have discovered how the most common genetic mutations in familial Parkinson’s disease damage brain cells.

The mutations block an intracellular system that normally prevents a protein called alpha-synuclein from reaching toxic levels in dopamine-producing neurons. The findings suggest that interventions aimed at enhancing this digestive system, or preventing its disruption, may prove valuable in the prevention or treatment of Parkinson’s. The study was published March 3 in the online edition of the journal Nature Neuroscience.

Parkinson’s disease is characterized by the formation of Lewy bodies (which are largely composed of alpha-synuclein) in dopamine neurons. In 1997, scientists discovered that a mutation in alpha-synuclein can lead to Lewy body formation. “But alpha-synuclein mutations occur in only a tiny percentage of Parkinson’s patients,” said co-lead author David L. Sulzer, PhD, professor of neurology, pharmacology, and psychiatry at CUMC. “This meant that there must be something else that interfered with alpha-synuclein in people with Parkinson’s.”

Dr. Sulzer and his colleagues suspected that a gene called leucine-rich repeat kinase-2 (LRRK2) might be involved. LRRK2 mutations are the most common mutations to have been linked to Parkinson’s. The current study aimed to determine how these mutations might lead to the accumulation of alpha-synuclein.

“We found that abnormal forms of LRRK2 protein disrupt a critical protein-degradation process in cells called chaperone-mediated autophagy,” said Dr. Sulzer. “One of the proteins affected by this disruption is alpha-synuclein. As this protein starts to accumulate, it becomes toxic to neurons.” Delving deeper, the researchers found that LRRK2 mutations interfere with LAMP-2A, a lysosome membrane receptor that plays a key role in lysosome function.

(Chaperone-mediated autophagy, or CMA, is responsible for transporting old or damaged proteins from the cell body to the lysosomes, where they are digested into amino acids and then recycled. In 2004, Dr. Sulzer and the current paper’s other co-lead author, Ana Maria Cuervo, MD, PhD, professor of developmental & molecular biology, of anatomy & structural biology, and of medicine at Albert Einstein College of Medicine of Yeshiva University, showed that alpha-synuclein is degraded by the CMA pathway.)

“Now that we know this step that may be causing the disease in many patients, we can begin to develop drug treatments or genetic treatments that can enhance the digestion of these disease-triggering proteins, alpha-synuclein and LRRK2, or that remove alpha-synuclein,” said Dr. Sulzer.

While LRRK2 mutations are the most common genetic cause of Parkinson’s, it is too early to tell whether these findings, and therapies that might stem from them, would apply to patients with non-familial Parkinson’s, the more common form of the disease. “Right now, all we can say is that it looks as though we’ve found a fundamental pathway that causes the buildup of alpha-synuclein in people with LRRK2 mutations and links these mutations to a common cause of the disease. We suspect that this pathway may be involved in many other Parkinson’s patients,” said Dr. Sulzer.

The study involved mouse neurons in tissue culture from four different animal models, neurons from the brains of patients with Parkinson’s with LRRK2 mutations, and neurons derived from the skin cells of Parkinson’s patients via induced pluripotent stem (iPS) cell technology. All the lines of research confirmed the researchers’ discovery.

The paper is titled “Interplay of LRRK2 with chaperone-mediated autophagy.” The other contributors are Samantha J. Orenstein (Einstein), Sheng-Han Kuo (CUMC), Inmaculada Tasset (Einstein), Esperanza Arias (Einstein), Hiroshi Koga (Einstein), Irene Fernandez-Carasa (University of Barcelona, Barcelona Spain), Etty Cortes (CUMC), Lawrence S. Honig (CUMC), William Dauer (University of Michigan, Ann Arbor, MI), Antonella Consiglio (University of Barcelona and University of Brescia, Brescia, Italy), and Angel Raya (Insitucio Catalana de Recerca I Estudies Avancas and Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain).

The collaboration of Sulzer and Cuervo was supported by a Udall Center of Excellence for Research in Parkinson’s Disease of the NIH National Institute of Neurological Disorders and Stroke. This work was further supported by grants from the JPB Foundation, the National Institute on Aging (AG031782 and AG08702); the Rainwater Foundation; the Beatrice and Roy Backus Foundation; the Parkinson’s Disease Foundation; Fondazione Guido Berlucchi; and Centers for Networked Biomedical Research, Ministry of Economy and Competitiveness and by a Hirschl/Weill-Caulier Career Scientist Award and a gift from Robert and Renee Belfer.

The authors declare no financial or other conflicts of interest.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

GI Problems in Autism May Originate in Genes
Gene linked to autism lowers serotonin activity in mice, slows movement in gut.
Tuesday, April 26, 2016
Virus Causing Tilapia Die-Offs Identified
Discovery of the virus causing Tilapia die-offs in Israel and Ecuador points the way to protecting a fish that feeds multitudes.
Wednesday, April 06, 2016
Celiac Disease Risk Linked to Non-coding RNA
Suggests factors outside of protein-coding genes play a role in celiac disease.
Friday, April 01, 2016
New Haploid Embryonic Stem Cell Line
The haploid stem cells may yield new genetic screening tools and therapies.
Thursday, March 17, 2016
Core Symptom of Schizophrenia Eliminated
Team uses chemical compound to restore affected brain regions; findings could lead to new treatment strategies.
Friday, February 19, 2016
New Way to Identify Brain Tumor Aggressiveness
Looking at a brain tumor’s epigenetic signature may help guide therapy.
Friday, January 29, 2016
Useful Colon Cancer Biomarker Discovered
Biomarker is detectable with simple, inexpensive test.
Monday, January 25, 2016
Link Between Congenital Heart, Brain Disorders
Tools of precision medicine may lead to earlier identification and treatment of children with neurodevelopmental disorders.
Thursday, December 10, 2015
Engineers Build Biologically Powered Chip
System combines biological ion channels with solid-state transistors to create a new kind of electronics.
Wednesday, December 09, 2015
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Thursday, November 26, 2015
What Do Animal Viruses Have to Do with Human Health?
Simon Anthony studies animal infections to prevent outbreaks in people.
Monday, September 28, 2015
Dentists Tapped for New Role: Drug Screenings
A visit to the dentist has the potential to be more than a checkup of our teeth as patients are increasingly screened for medical conditions like heart disease and diabetes.
Tuesday, August 18, 2015
Computer Model Forecasts Flu Outbreaks in Subtropical Climate
Study in Hong Kong predicts outbreaks by flu strains and is first to forecast flu in a subtropical climate.
Friday, August 07, 2015
Long-term Memories Are Maintained by Prion-like Proteins
Research from Eric Kandel’s lab at Columbia University Medical Center has uncovered evidence of a system in the brain that persistently maintains memories for long periods of time.
Friday, July 03, 2015
Scientists are Designing Decoy Drugs to Fool Cancer
Study shows potential of drugs that can target the Notch switch with reduced toxicity.
Thursday, May 28, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Following Tricky Triclosan
Antibacterial product flows through streams, crops.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!