Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellectis Announced Collaboration Agreement with Stemgent

Published: Monday, March 11, 2013
Last Updated: Sunday, March 10, 2013
Bookmark and Share
Agreement to provide custom genome-engineered iPS cells.

Cellectis Bioresearch has announced a collaboration agreement with Stemgent, Inc. to provide research services that combines mRNA reprogramming technology and genome engineering.

The partnership marries Cellectis bioresearch’s leadership in genome engineering with Stemgent’s expertise in cellular reprogramming.

Stemgent’s proprietary mRNA reprogramming technology addresses the challenges around deriving non-viral non-integrating clinically-relevant induced pluripotent stem (iPS) cells for use in regenerative medicine drug discovery and basic research.

Traditional reprogramming methods can lead to the integration of unwanted genetic material into the host genome and therefore can be disruptive to the reprogrammed cell’s function.

Targeted genome engineering is a powerful technology that can be used to elucidate the genetic basis of diseases and to evaluate drug candidates through the generation of cell-based assays.

Cellectis bioresearch’s TALEN™-based genome engineering technology enables the directed introduction of disease-specific genetic mutations to mimic disease and of reporter genes with fluorescent/luminescent tags to evaluate drug candidate efficacy specificity and toxicity.

Together these two powerful technologies pave the way for clinically-relevant applications in regenerative medicine.

Cellectis Group CEO André Choulika said “The collaboration between Stemgent and Cellectis fits with our mission to enable scientists worldwide with the tools to generate genome-engineered iPS cells for use in their research and regenerative medicine.”

“Drug toxicity testing is an important part of early-stage drug development continued Ian Ratcliffe Stemgent President and CEO. “The challenge researchers face is that current models to test drugs are often inadequate. With this partnership and the combined technologies we can introduce mutations into reprogrammed cells and differentiate them into downstream lineages. Researchers can utilize these cells to test how mutations known and unknown alter the biology of the cells upon exposure to drugs.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!