Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Watery Research Theme to Flow Through New Tokmakoff Lab

Published: Friday, March 15, 2013
Last Updated: Friday, March 15, 2013
Bookmark and Share
Andrei Tokmakoff to use the world’s shortest infrared light pulses to pluck molecular bonds.

Once Andrei Tokmakoff gets his new laser laboratory operational later this year, he will use the world’s shortest infrared light pulses to pluck molecular bonds like a stringed musical instrument.

Tokmakoff, the Henry G. Gale Distinguished Service Professor of Chemistry, arrived at the University of Chicago in January to tackle new problems in biology with the aid of ultrafast vibrational spectroscopy methods that he has developed.

“He does very sophisticated spectroscopy, in particular vibrational spectroscopy,” said Richard Jordan, professor and chairman of chemistry. “He has developed advanced, laser-based methods that can probe how the bonds in molecules stretch and bend.”

Tokmakoff’s hire is a major component of the chemistry department’s effort to expand from its current 22 faculty members to 27 or 28 within the next two years.

“We have targeted three or four important areas to build in. One of them is biological chemistry, those aspects of chemistry that deal with biological problems,” Jordan said.

Tokmakoff does both physical and biophysical chemistry. Physical chemistry - studying the behavior of materials and chemical reactions at the atomic and molecular level - has a long tradition of excellence at UChicago.

Biophysical chemistry has emerged more recently as a major campus initiative that encompasses the James Franck Institute and the Institute for Biophysical Dynamics (Tokmakoff is a member of both) and the Biophysical Sciences Program.

A special liquid
Tokmakoff seeks to understand the special behavior of liquid water, protein-water interactions, and the dynamics of protein folding and binding. This includes how hydrogen bonds connect different molecules to one another and how these bonds rearrange themselves so that the liquid flows.

“These are not phenomena that can be described simply in terms of the motion of one molecule,” said Tokmakoff, formerly of the Massachusetts Institute of Technology. “Many of the reasons why it’s so vital to life processes also originate not just as one individual molecule, but how they all collectively interact with biological molecules.”

Tokmakoff generates light bursts at 40-femtosecond intervals with ultrafast vibrational spectroscopy. “Light travels the diameter of a cell or a small pollen grain in that time,” he said. Molecules barely move in 40 femtoseconds (a quadrillionth of a second), which corresponds to the period of a molecular bond vibration.

These ultra-short pulses of infrared radiation “act a bit like stop-motion photography,” Tokmakoff said. Although it’s not real photography, “a sequence of ultra-short bursts of light can capture the motion of an object by freezing it at different points in time. We don’t physically image the molecules, but infrared radiation interacts with the bond vibrations of water,” he said. These interactions reveal the structure of the object in question.

“Through a sequence of these pulses we can design experiments that give us a lot of information about the molecular structure before it changes, even if it is constantly moving,” Tokmakoff explained.

At MIT, Tokmakoff applied ultrafast spectroscopic methods to key problems in chemistry. He discovered that the molecular structure of water evolves in big jumps when the molecules collectively change the connectivity of their hydrogen bonds. “It’s a very strange behavior, but the fact that water does this and does it often really makes it a liquid and allows it to flow.”

“Beyond water we’re also applying the same sorts of methods to a lot of problems in molecular biophysics. Many of the problems that exist there share the characteristics with water that they are messy, complicated, constantly evolving molecular structures,” Tokmakoff said, including protein folding.

Disordered yet functional
Tokmakoff’s group has a special interest in disordered proteins. Molecular biologists primarily conceive of proteins as well-defined, three-dimensional, biologically active structures. “The reason we conceive them that way is because that’s what our experiments tell us,” he said. In fact, many proteins are either partially or fully disordered, yet they can still be functional.

Scientists often talk of proteins connecting like a lock and key, but that analogy falls far short of explaining how two structurally disorganized molecules manage to find and then connect with one another.

Two proteins exhibiting no apparent structure wander around randomly in a cell. When they encounter one another they somehow know that they were made for each other, and they often do this with more efficiency and speed than current theory can explain.

“You’ve got one molecule of thousands and thousands in a cell, and somehow it’s miraculously going to find its one partner and do it so efficiently-it’s just mind-boggling,” Tokmakoff said. Tucked into the many aspects of that problem is the molecular fine print: how a protein recognizes and binds to its partner.

Many classes of proteins exhibit such behavior, and Tokmakoff would like to unlock the secret to that behavior. “We’re in the middle of all kinds of cool experiments,” he said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Enormous Genetic Variation May Shield Tumors from Treatment
Debate over Darwinian selection vs. random mutations emerges at the tumor level.
Wednesday, November 11, 2015
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Monday, November 09, 2015
Protein Aggregation After Heat Shock Is An Organized, Reversible Response
New study finds protein aggregation after heat exposure is a reversible cellular process, not unrecoverable damage from misfolding.
Friday, September 11, 2015
New Form of DNA Modification May Carry Inheritable Information
Scientists have described the surprising discovery and function of a new DNA modification in insects, worms and algae.
Friday, May 08, 2015
Shape-Shifting Molecule Tricks Viruses Into Mutating Themselves To Death
Study uses two-dimensional infrared spectroscopy to help distinguish between normal and shape-shifted structures.
Thursday, April 16, 2015
Drug-Development Grants Focus On Sleep Apnea, Asthma Research
NIH grants awarded to two University of Chicago research teams will help to develop novel treatments for sleep apnea and asthma.
Tuesday, January 27, 2015
Gut Bacteria that Protect Against Food Allergies Identified
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.
Wednesday, August 27, 2014
Researchers Identify ‘Fat Gene’ Associated with Obesity
Mutations within the gene FTO have been implicated as the strongest genetic determinant of obesity risk in humans, but the mechanism behind this link remained unknown.
Monday, March 17, 2014
Autism and Intellectual Disability Incidence Linked with Environmental Factors
Although autism and intellectual disability have genetic components, environmental causes are thought to play a role.
Monday, March 17, 2014
Staphylococcus Aureus Bacteria Turns Immune System Against Itself
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, including the antibiotic-resistant strain MRSA.
Friday, December 13, 2013
Staphylococcus aureus Bacteria Turns Immune System Against Itself
Scientists use primary human immune defense mechanism to destroy white blood cells.
Thursday, December 05, 2013
Genetic Analysis Reveals Insights into Genetics of OCD, Tourette’s
Major differences between the genetic makeup of obsessive-compulsive disorder and Tourette’s syndrome, providing the first direct confirmation that both are highly heritable.
Tuesday, November 05, 2013
Computer Modeling Shows Crucial Function of Water Molecules in Proteins
Scientists used molecular simulations that modeled a potassium channel and its immediate cellular environment, atom for atom.
Wednesday, July 31, 2013
Israel-Chicago Partnership Targets Water Resource Innovations
Partnership is to create new materials and processes for making clean, fresh drinking water more plentiful and less expensive by 2020.
Monday, June 24, 2013
Multiple Research Teams Unable to Confirm High-Profile Alzheimer’s Study
Teams of highly respected Alzheimer’s researchers failed to replicate what appeared to be breakthrough results for the treatment of this brain disease when they were published last year in the journal Science.
Friday, May 24, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos