Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Watery Research Theme to Flow Through New Tokmakoff Lab

Published: Friday, March 15, 2013
Last Updated: Friday, March 15, 2013
Bookmark and Share
Andrei Tokmakoff to use the world’s shortest infrared light pulses to pluck molecular bonds.

Once Andrei Tokmakoff gets his new laser laboratory operational later this year, he will use the world’s shortest infrared light pulses to pluck molecular bonds like a stringed musical instrument.

Tokmakoff, the Henry G. Gale Distinguished Service Professor of Chemistry, arrived at the University of Chicago in January to tackle new problems in biology with the aid of ultrafast vibrational spectroscopy methods that he has developed.

“He does very sophisticated spectroscopy, in particular vibrational spectroscopy,” said Richard Jordan, professor and chairman of chemistry. “He has developed advanced, laser-based methods that can probe how the bonds in molecules stretch and bend.”

Tokmakoff’s hire is a major component of the chemistry department’s effort to expand from its current 22 faculty members to 27 or 28 within the next two years.

“We have targeted three or four important areas to build in. One of them is biological chemistry, those aspects of chemistry that deal with biological problems,” Jordan said.

Tokmakoff does both physical and biophysical chemistry. Physical chemistry - studying the behavior of materials and chemical reactions at the atomic and molecular level - has a long tradition of excellence at UChicago.

Biophysical chemistry has emerged more recently as a major campus initiative that encompasses the James Franck Institute and the Institute for Biophysical Dynamics (Tokmakoff is a member of both) and the Biophysical Sciences Program.

A special liquid
Tokmakoff seeks to understand the special behavior of liquid water, protein-water interactions, and the dynamics of protein folding and binding. This includes how hydrogen bonds connect different molecules to one another and how these bonds rearrange themselves so that the liquid flows.

“These are not phenomena that can be described simply in terms of the motion of one molecule,” said Tokmakoff, formerly of the Massachusetts Institute of Technology. “Many of the reasons why it’s so vital to life processes also originate not just as one individual molecule, but how they all collectively interact with biological molecules.”

Tokmakoff generates light bursts at 40-femtosecond intervals with ultrafast vibrational spectroscopy. “Light travels the diameter of a cell or a small pollen grain in that time,” he said. Molecules barely move in 40 femtoseconds (a quadrillionth of a second), which corresponds to the period of a molecular bond vibration.

These ultra-short pulses of infrared radiation “act a bit like stop-motion photography,” Tokmakoff said. Although it’s not real photography, “a sequence of ultra-short bursts of light can capture the motion of an object by freezing it at different points in time. We don’t physically image the molecules, but infrared radiation interacts with the bond vibrations of water,” he said. These interactions reveal the structure of the object in question.

“Through a sequence of these pulses we can design experiments that give us a lot of information about the molecular structure before it changes, even if it is constantly moving,” Tokmakoff explained.

At MIT, Tokmakoff applied ultrafast spectroscopic methods to key problems in chemistry. He discovered that the molecular structure of water evolves in big jumps when the molecules collectively change the connectivity of their hydrogen bonds. “It’s a very strange behavior, but the fact that water does this and does it often really makes it a liquid and allows it to flow.”

“Beyond water we’re also applying the same sorts of methods to a lot of problems in molecular biophysics. Many of the problems that exist there share the characteristics with water that they are messy, complicated, constantly evolving molecular structures,” Tokmakoff said, including protein folding.

Disordered yet functional
Tokmakoff’s group has a special interest in disordered proteins. Molecular biologists primarily conceive of proteins as well-defined, three-dimensional, biologically active structures. “The reason we conceive them that way is because that’s what our experiments tell us,” he said. In fact, many proteins are either partially or fully disordered, yet they can still be functional.

Scientists often talk of proteins connecting like a lock and key, but that analogy falls far short of explaining how two structurally disorganized molecules manage to find and then connect with one another.

Two proteins exhibiting no apparent structure wander around randomly in a cell. When they encounter one another they somehow know that they were made for each other, and they often do this with more efficiency and speed than current theory can explain.

“You’ve got one molecule of thousands and thousands in a cell, and somehow it’s miraculously going to find its one partner and do it so efficiently-it’s just mind-boggling,” Tokmakoff said. Tucked into the many aspects of that problem is the molecular fine print: how a protein recognizes and binds to its partner.

Many classes of proteins exhibit such behavior, and Tokmakoff would like to unlock the secret to that behavior. “We’re in the middle of all kinds of cool experiments,” he said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Form of DNA Modification May Carry Inheritable Information
Scientists have described the surprising discovery and function of a new DNA modification in insects, worms and algae.
Friday, May 08, 2015
Shape-Shifting Molecule Tricks Viruses Into Mutating Themselves To Death
Study uses two-dimensional infrared spectroscopy to help distinguish between normal and shape-shifted structures.
Thursday, April 16, 2015
Drug-Development Grants Focus On Sleep Apnea, Asthma Research
NIH grants awarded to two University of Chicago research teams will help to develop novel treatments for sleep apnea and asthma.
Tuesday, January 27, 2015
Gut Bacteria that Protect Against Food Allergies Identified
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.
Wednesday, August 27, 2014
Researchers Identify ‘Fat Gene’ Associated with Obesity
Mutations within the gene FTO have been implicated as the strongest genetic determinant of obesity risk in humans, but the mechanism behind this link remained unknown.
Monday, March 17, 2014
Autism and Intellectual Disability Incidence Linked with Environmental Factors
Although autism and intellectual disability have genetic components, environmental causes are thought to play a role.
Monday, March 17, 2014
Staphylococcus Aureus Bacteria Turns Immune System Against Itself
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, including the antibiotic-resistant strain MRSA.
Friday, December 13, 2013
Staphylococcus aureus Bacteria Turns Immune System Against Itself
Scientists use primary human immune defense mechanism to destroy white blood cells.
Thursday, December 05, 2013
Genetic Analysis Reveals Insights into Genetics of OCD, Tourette’s
Major differences between the genetic makeup of obsessive-compulsive disorder and Tourette’s syndrome, providing the first direct confirmation that both are highly heritable.
Tuesday, November 05, 2013
Computer Modeling Shows Crucial Function of Water Molecules in Proteins
Scientists used molecular simulations that modeled a potassium channel and its immediate cellular environment, atom for atom.
Wednesday, July 31, 2013
Israel-Chicago Partnership Targets Water Resource Innovations
Partnership is to create new materials and processes for making clean, fresh drinking water more plentiful and less expensive by 2020.
Monday, June 24, 2013
Multiple Research Teams Unable to Confirm High-Profile Alzheimer’s Study
Teams of highly respected Alzheimer’s researchers failed to replicate what appeared to be breakthrough results for the treatment of this brain disease when they were published last year in the journal Science.
Friday, May 24, 2013
Gifts to Boost University of Chicago as Hub for Biomedical 'Big Data'
Two major gifts will build momentum behind the University of Chicago’s leadership in biomedical computation.
Thursday, April 18, 2013
International Technology Partnership to Focus on Water Problems
The University of Chicago and Ben-Gurion University of the Negev sign agreement that would create new water production and purification technologies for regions of the globe where fresh water resources are scarce.
Wednesday, March 20, 2013
Computational Center Will Study the Past and Future of Knowledge
Templeton Foundation awards $5.2 million for Computation Institute's Metaknowledge Network.
Monday, March 04, 2013
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!