Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford's GCEP will Award $6.6 Million for Novel Energy Research

Published: Friday, March 15, 2013
Last Updated: Friday, March 15, 2013
Bookmark and Share
The Global Climate and Energy Project will award $6.6 million for research that leads to cleaner fuels and lower greenhouse gas emissions.

New awards totaling $6.6 million from Stanford University’s Global Climate and Energy Project (GCEP) will advance research on clean-burning fuels and technologies for capturing carbon dioxide (CO2) emissions.

The funding will be shared by seven research teams - six from Stanford and one from Carnegie Mellon University.

The seven awards bring the total number of GCEP-supported research programs to 104, with total funding of approximately $125 million since the project's launch in 2002.

"GCEP's mission is to develop new technologies that will dramatically reduce global greenhouse gas emissions," said GCEP Director Sally Benson, a research professor of energy resources engineering at Stanford.

Benson continued, "The proposals in the current round of funding involve potentially game-changing research - from electrochemical technologies that convert CO2 into fuel to analyses of large-scale systems for capturing CO2 from power plants."

The following three Stanford research teams will receive funding to develop carbon-neutral technologies that produce electricity or clean-burning hydrogen fuel:

• Steam-carbon fuel cells. The goal is to design a novel fuel cell that uses coal and water to generate hydrogen, water and a stream of carbon dioxide gas, which can be captured and sequestered. Investigators: Reginald Mitchell, Mechanical Engineering, and Turgut Gür, Materials Science and Engineering.
• High-efficiency thin-film solar cells. Researchers will create a low-cost silicon/gallium-based solar cell that's more than twice as efficient as conventional thin-film cells. Investigators: James Harris, Shanhui Fan and Yi Cui, Electrical Engineering; Mark Brongersma, Materials Science and Engineering.
• Advanced water-splitting. The goal is to develop corrosion-resistant electrodes for devices that use sunlight to split water into hydrogen and oxygen. Investigators: Paul McIntyre, Materials Science and Engineering, and Christopher Chidsey, Chemistry.

Two Stanford teams will receive funding to test new electrochemical catalysts that convert carbon dioxide into liquid fuels and chemicals:

• Electrohydrogenation: Enabling science for renewable fuels. Investigators: Robert Waymouth and Christopher Chidsey, Chemistry.
• Energy-efficient electrocatalysts for renewable fuels and chemicals. Investigators: Daniel Stack and Christopher Chidsey, Chemistry.

"Electrochemical technologies address one of the big challenges in renewable energy: storing intermittent wind and solar power in a cost-effective manner," said Tom Jaramillo, an assistant professor of chemical engineering and GCEP theme leader in electrochemical energy conversion. "These research projects could lead to interesting ways of using electricity from renewables to transform atmospheric CO2 into methanol and other carbon-neutral fuels."

In addition to the lab-oriented projects, two research teams will receive funding to develop computer models that evaluate the effectiveness of various technologies for capturing carbon dioxide emissions from power plants:

• Carbon-capture systems analysis. Investigators: Chris Edwards, Mechanical Engineering, and Adam Brandt, Energy Resources Engineering, Stanford.
• Advanced power plant carbon technologies. Investigators: Ed Rubin and Haibo Zhai, Engineering and Public Policy, and John Kitchin, Chemical Engineering, Carnegie Mellon.

"Carbon capture and sequestration, and technologies that combine energy conversion with carbon-neutral fuel production could play major roles in the energy sector in the coming decades," said Pete Trelenberg, chair of the GCEP management committee and manager of environmental policy and planning at Exxon Mobil Corp. "The work represented by these GCEP awards is critical for the future."

GCEP is an industry partnership that supports innovative research on energy technologies that address the challenge of global climate change. Based at Stanford, the project includes four corporate sponsors - ExxonMobil, GE, Schlumberger and DuPont.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$10M Grant Funds Infection-Focused Center
The new center will explore intracellular and intercellular processes by which salmonella bacteria, responsible for more than 100 million symptomatic infections annually, infect immune cells.
Wednesday, April 06, 2016
Resurrecting an Abandoned Drug
Previously discarded drug shows promise in helping human cells in a lab dish fight off two different viruses.
Wednesday, March 30, 2016
Fracking's Impact on Drinking Water Sources
A case study of a small Wyoming town reveals that practices common in the fracking industry may have widespread impacts on drinking water resources.
Wednesday, March 30, 2016
Imaging Cells and Tissues Under the Skin
First technique developed for viewing cells and tissues in three dimensions under the skin.
Tuesday, March 22, 2016
Glucose-Guzzling Immune Cells May Drive Coronary Artery Disease
Researchers at Stanford University have found excessive glucose uptake by inflammatory immune cells called macrophages, which reside in arterial plaques, may be behind coronary artery disease.
Wednesday, March 16, 2016
Ultra-Sensitive Test for Cancers, HIV
Test developed that is thousands of times more sensitive than current diagnostics.
Tuesday, March 15, 2016
Weighing up the Risk of Groundwater Contamination
Faulty, shallow wells can leak oil and natural gas into underground drinking-water supplies, Stanford Professor Rob Jackson finds.
Wednesday, February 24, 2016
Blood Test Could Transform TB Diagnosis
A simple blood test that can accurately diagnose active tuberculosis could make it easier and cheaper to control a disease that kills 1.5 million people every year.
Tuesday, February 23, 2016
Paper Published Based on RNA Game
Video-gamers have co-authored a paper describing a new set of rules for determining the difficulty of designing structures composed of RNA molecules.
Thursday, February 18, 2016
Marker Identifies Most Basic Form of Blood Stem Cell
Nearly 30 years after the discovery of the hematopoietic stem cell, Stanford researchers have found a marker that allows them to study the version of these stem cells that continues to replicate.
Wednesday, February 17, 2016
Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
World Forest Carbon Stocks Overestimated
Researchers with The Natural Capital Project show how fragmentation harms forests' ability to store carbon; more restoration is needed to reconnect forest patches.
Tuesday, January 05, 2016
U.S. Needs a New Approach for Governance of Risky Research
The United States needs better oversight of risky biological research to reduce the likelihood of a bioengineered super virus escaping from the lab or being deliberately unleashed, according three Stanford scholars.
Monday, January 04, 2016
Mapping the Mechanical Properties of Living Cells
Researchers have developed a new way to use atomic force microscopy to rapidly measure the mechanical properties of cells at the nanometer scale, an advance that could pave the way for better understanding immune disorders and cancer.
Monday, December 21, 2015
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!