" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford's GCEP will Award $6.6 Million for Novel Energy Research

Published: Friday, March 15, 2013
Last Updated: Friday, March 15, 2013
Bookmark and Share
The Global Climate and Energy Project will award $6.6 million for research that leads to cleaner fuels and lower greenhouse gas emissions.

New awards totaling $6.6 million from Stanford University’s Global Climate and Energy Project (GCEP) will advance research on clean-burning fuels and technologies for capturing carbon dioxide (CO2) emissions.

The funding will be shared by seven research teams - six from Stanford and one from Carnegie Mellon University.

The seven awards bring the total number of GCEP-supported research programs to 104, with total funding of approximately $125 million since the project's launch in 2002.

"GCEP's mission is to develop new technologies that will dramatically reduce global greenhouse gas emissions," said GCEP Director Sally Benson, a research professor of energy resources engineering at Stanford.

Benson continued, "The proposals in the current round of funding involve potentially game-changing research - from electrochemical technologies that convert CO2 into fuel to analyses of large-scale systems for capturing CO2 from power plants."

The following three Stanford research teams will receive funding to develop carbon-neutral technologies that produce electricity or clean-burning hydrogen fuel:

• Steam-carbon fuel cells. The goal is to design a novel fuel cell that uses coal and water to generate hydrogen, water and a stream of carbon dioxide gas, which can be captured and sequestered. Investigators: Reginald Mitchell, Mechanical Engineering, and Turgut Gür, Materials Science and Engineering.
• High-efficiency thin-film solar cells. Researchers will create a low-cost silicon/gallium-based solar cell that's more than twice as efficient as conventional thin-film cells. Investigators: James Harris, Shanhui Fan and Yi Cui, Electrical Engineering; Mark Brongersma, Materials Science and Engineering.
• Advanced water-splitting. The goal is to develop corrosion-resistant electrodes for devices that use sunlight to split water into hydrogen and oxygen. Investigators: Paul McIntyre, Materials Science and Engineering, and Christopher Chidsey, Chemistry.

Two Stanford teams will receive funding to test new electrochemical catalysts that convert carbon dioxide into liquid fuels and chemicals:

• Electrohydrogenation: Enabling science for renewable fuels. Investigators: Robert Waymouth and Christopher Chidsey, Chemistry.
• Energy-efficient electrocatalysts for renewable fuels and chemicals. Investigators: Daniel Stack and Christopher Chidsey, Chemistry.

"Electrochemical technologies address one of the big challenges in renewable energy: storing intermittent wind and solar power in a cost-effective manner," said Tom Jaramillo, an assistant professor of chemical engineering and GCEP theme leader in electrochemical energy conversion. "These research projects could lead to interesting ways of using electricity from renewables to transform atmospheric CO2 into methanol and other carbon-neutral fuels."

In addition to the lab-oriented projects, two research teams will receive funding to develop computer models that evaluate the effectiveness of various technologies for capturing carbon dioxide emissions from power plants:

• Carbon-capture systems analysis. Investigators: Chris Edwards, Mechanical Engineering, and Adam Brandt, Energy Resources Engineering, Stanford.
• Advanced power plant carbon technologies. Investigators: Ed Rubin and Haibo Zhai, Engineering and Public Policy, and John Kitchin, Chemical Engineering, Carnegie Mellon.

"Carbon capture and sequestration, and technologies that combine energy conversion with carbon-neutral fuel production could play major roles in the energy sector in the coming decades," said Pete Trelenberg, chair of the GCEP management committee and manager of environmental policy and planning at Exxon Mobil Corp. "The work represented by these GCEP awards is critical for the future."

GCEP is an industry partnership that supports innovative research on energy technologies that address the challenge of global climate change. Based at Stanford, the project includes four corporate sponsors - ExxonMobil, GE, Schlumberger and DuPont.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
World Forest Carbon Stocks Overestimated
Researchers with The Natural Capital Project show how fragmentation harms forests' ability to store carbon; more restoration is needed to reconnect forest patches.
Tuesday, January 05, 2016
U.S. Needs a New Approach for Governance of Risky Research
The United States needs better oversight of risky biological research to reduce the likelihood of a bioengineered super virus escaping from the lab or being deliberately unleashed, according three Stanford scholars.
Monday, January 04, 2016
Mapping the Mechanical Properties of Living Cells
Researchers have developed a new way to use atomic force microscopy to rapidly measure the mechanical properties of cells at the nanometer scale, an advance that could pave the way for better understanding immune disorders and cancer.
Monday, December 21, 2015
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Novel Approach to Understanding Brain Function
Russell Poldrack scanned his brain to create the most detailed map of brain connectivity ever.
Monday, December 14, 2015
Accelerating Protein Evolution
A new tool enables researchers to test millions of mutated proteins in a matter of hours or days, speeding the search for new medicines, industrial enzymes and biosensors.
Monday, December 14, 2015
Blocking Dengue Fever Virus
By targeting fundamental cellular machinery, the antiviral approach developed in Judith Frydman's lab at Stanford could provide a roadmap to preventing infections that affect hundreds of millions of people every year.
Thursday, December 03, 2015
Gene Linked to Heart Failure
Researchers have identified a previously unknown association between heart function and the narcolepsy-linked orexin receptor pathway, a finding that could provide a promising direction for treatment research.
Wednesday, December 02, 2015
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Sleep Deprivation Affects Stem Cells, Reducing Transplant Efficiency
Although the research was done in mice, the findings have possible implications for bone marrow transplants, more properly called hematopoietic stem cell transplants, in humans.
Friday, October 16, 2015
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Scientific News
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Madison Researchers Begin Work on Zika Virus
Work will start with basic questions about Zika virus infection.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!