Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

X-ray Laser Explores New Uses for DNA Building Blocks

Published: Monday, March 18, 2013
Last Updated: Monday, March 18, 2013
Bookmark and Share
The founding father of DNA nanotechnology – a field that forges tiny geometric building blocks from DNA strands – recently came to SLAC to get a new view of these creations using powerful X-ray laser pulses.

For decades, Nadrian C. "Ned" Seeman, a chemistry professor at New York University, has studied ways to assemble DNA strands into geometric shapes and 3-D crystals with applications in biology, biocomputing and nanorobotics.

He said the experiment conducted Feb. 7-11 at SLAC's Linac Coherent Light Source enabled his team for the first time to study the DNA structures using smaller crystals in solution at room temperature.

They want to find out whether they can analyze the structure of their samples more precisely in this natural state, as their previous work relied on larger, frozen samples and the freezing process can damage the DNA structures.

"I think we'll get some pretty exciting results," Seeman said during the last shift of the team's LCLS experiment. "I'm very excited by everything I have seen so far."

The DNA crystals were suspended in fluid and streamed across the path of the ultrabright, ultrashort LCLS X-ray laser pulses. Detectors captured images, known as diffraction patterns, produced as the X-ray light struck the crystals. The technique is known as X-ray nanocrystallography.

SLAC’s Sebastien Boutet, an instrument scientist at the LCLS Coherent X-ray Imaging Department, said the DNA crystals used in the experiment measured up to about 2-5 microns, or 2-5 thousandths of a millimeter, in size. The crystals were largely triangular and were self-assembled from 3-D DNA objects, forming an ordered lattice. The first-of-its-kind experiment at LCLS involved "lots of trial and error to find the ideal way to prepare the samples," Boutet said.

The engineered structures exploit the natural chemical pairing of DNA to bond small strands of DNA together. The resulting structures can be used to build tiny mechanical boxes and programmable robots for targeting disease, for example.

Researchers can also use DNA engineering as a platform for studying other molecules, such as proteins, that are important to disease research and drug development but are difficult to crystallize, which makes them hard to visualize.

When these proteins are attached to a DNA scaffolding, like salt coating a pretzel, the patterns they form can help scientists analyze their structure.

"The goal, ultimately, is to be able to use this lattice as a crystallization vehicle for things that may not so readily crystallize," Seeman said, "and also for controlling matter, in general, on the nanometer scale."

The ability to form a lattice out of DNA strands, coupled with the fundamental role DNA plays as a biological data storage medium, has also spawned research in DNA-based computing, in which DNA's chemistry and structure are manipulated to store data and carry out computing tasks, performing the functions of magnetic hard drives and silicon chips.

"The key point of DNA is it's got information – it's programmable," Seeman said.

Seeman's research team has previously used synchrotron facilities at Argonne and Brookhaven national laboratories for experiments. He learned about the capabilities at LCLS from Hao Yan, a former student, now at Arizona State University, who has participated in nanocrystallography experiments at LCLS.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

X-rays Used to Examine How DNA Protects Itself from UV Light
Scientists have made detailed observations of a “relaxation response” that protects these molecules, and the genetic information they encode, from UV damage.
Tuesday, June 24, 2014
Scientists Prove X-ray Laser Can Solve Protein Structures from Scratch
Study shows for the first time that X-ray lasers can be used to generate a complete 3-D model of a protein without any prior knowledge of its structure.
Friday, November 29, 2013
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Study Removes Cancer Doubt for Multiple Sclerosis Drug
Researchers from Queen Mary University of London are calling on the medical community to reconsider developing a known drug to treat people with relapsing Multiple sclerosis after new evidence shows it does not increase the risk of cancer as previously thought.
Self-Propelled Powder to Stop Bleeding
UBC researchers have created the first self-propelled particles capable of delivering coagulants against the flow of blood to treat severe bleeding, a potentially huge advancement in trauma care.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos