Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Breaking Down the Parkinson’s Pathway

Published: Wednesday, March 20, 2013
Last Updated: Wednesday, March 20, 2013
Bookmark and Share
New study is first to analyze how affected brain cells respond during different behavioral tasks.

The key hallmark of Parkinson’s disease is a slowdown of movement caused by a cutoff in the supply of dopamine to the brain region responsible for coordinating movement. While scientists have understood this general process for many years, the exact details of how this happens are still murky.

“We know the neurotransmitter, we know roughly the pathways in the brain that are being affected, but when you come right down to it and ask what exactly is the sequence of events that occurs in the brain, that gets a little tougher,” says Ann Graybiel, an MIT Institute Professor and member of MIT’s McGovern Institute for Brain Research.

A new study from Graybiel’s lab offers insight into some of the precise impairments caused by the loss of dopamine in brain cells affected by Parkinson’s disease. The findings, which appear in the March 12 online edition of the Journal of Neuroscience, could help researchers not only better understand the disease, but also develop more targeted treatments.

Lead author of the paper is Ledia Hernandez, a former MIT postdoc. Other authors are McGovern Institute research scientists Yasuo Kubota and Dan Hu, former MIT graduate student Mark Howe and graduate student Nuné Lemaire.

Cutting off dopamine

The neurons responsible for coordinating movement are located in a part of the brain called the striatum, which receives information from two major sources — the neocortex and a tiny region known as the substantia nigra. The cortex relays sensory information as well as plans for future action, while the substantia nigra sends dopamine that helps to coordinate all of the cortical input.

“This dopamine somehow modulates the circuit interactions in such a way that we don’t move too much, we don’t move too little, we don’t move too fast or too slow, and we don’t get overly repetitive in the movements that we make. We’re just right,” Graybiel says.

Parkinson’s disease develops when the neurons connecting the substantia nigra to the striatum die, cutting off a critical dopamine source; in a process that is not entirely understood, too little dopamine translates to difficulty initiating movement. Most Parkinson’s patients receive L-dopa, which can substitute for the lost dopamine. However, the effects usually wear off after five to 10 years, and complications appear.

To study exactly how dopamine loss affects the striatum, the researchers disabled dopamine-releasing cells on one side of the striatum, in rats. This mimics what usually happens in the early stages of Parkinson’s disease, when dopamine input is cut off on only one side of the brain.

As the rats learned to run a T-shaped maze, the researchers recorded electrical activity in many individual neurons. The rats were rewarded for correctly choosing to run left or right as they approached the T, depending on the cue that they heard.

The researchers focused on two types of neurons: projection neurons, which send messages from the striatum to the neocortex to initiate or halt movement, and fast-spiking interneurons, which enable local communication within the striatum. Among the projection neurons, the researchers identified two subtypes — those that were active just before the rats began running, and those that were active during the run.

In the dopamine-depleted striatum, the researchers found, to their surprise, that the projection neurons still developed relatively normal activity patterns. However, they became even more active during the time when they were usually active (before or during the run). These hyper-drive effects were related to whether the rats had learned the maze task or not.

The interneurons, however, never developed the firing patterns seen in normal interneurons during learning, even after the rats had learned to run the maze. The local circuits were disabled.

Restoring neuron function

When the researchers then treated the rats with L-dopa, the drug restored normal activity in the projection neurons, but did not bring back normal activity in the interneurons. A possible reason for that is that those cells become disconnected by the loss of dopamine, so even when L-dopa is given, they can no longer shape the local circuits to respond to it.

This is the first study to show that the effects of dopamine loss depend not only on the type of neuron, but also on the phase of task behavior and how well the task has been learned, according to the researchers. To glean even more detail, Graybiel’s lab is now working on measuring dopamine levels in different parts of the brain as the dopamine-depleted rats learn new behaviors.

The lab is also seeking ways to restore function to the striatal interneurons that don’t respond to L-dopa treatment. The findings underscore the need for therapies that target specific deficiencies, says Joshua Goldberg, a senior lecturer in medical neurobiology at the Hebrew University of Jerusalem.

The new study “refines our appreciation of the complexity of [Parkinson’s],” says Goldberg, who was not part of the research team. “Graybiel’s team drives home the message that dopamine depletion, and dopamine replacement therapy, do not affect brain dynamics or behavior in a uniform fashion. Instead, their effect is highly context-dependent and differentially affects various populations of neurons.”

The research was funded by the National Institutes of Health/National Institute of Neurological Disorders and Stroke, the National Parkinson Foundation, the Stanley H. and Sheila G. Sydney Fund, a Parkinson’s Disease Foundation Fellowship and a Fulbright Fellowship.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Tuesday, November 24, 2015
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Friday, November 06, 2015
Using Ultrasound to Improve Drug Delivery
New approach could aid in treatment of inflammatory bowel disease.
Friday, October 23, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Personalized Heart Models For Surgical Planning
System can convert MRI scans into 3D-printed, physical models in a few hours.
Friday, September 18, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos