Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Network Being Built to Support Transfer of Big Data

Published: Thursday, March 21, 2013
Last Updated: Thursday, March 21, 2013
Bookmark and Share
The University of California, San Diego, is taking another leap forward in the name of enabling data-intensive science.

The Prism@UCSD project is building a research-defined, end-to-end cyberinfrastructure on the La Jolla campus capable of supporting bursts of data between facilities that might otherwise cripple the main campus network.

"High-performance cyberinfrastructure is a strategic necessity for a research university," said UC San Diego Chancellor Pradeep K. Khosla. "The Prism network will enable rapid movement of ‘Big Data’ for multiple, diverse disciplines across campus, including science, engineering, medicine and the arts."

With $500,000 in funding from the National Science Foundation (NSF), researchers in the UCSD division of the California Institute for Telecommunications and Information Technology (Calit2) are building the network to support researchers in half a dozen data-intensive scientific areas, including genomic sequencing, climate science, electron microscopy, oceanography and physics.

“We’ve identified a variety of big data users on this campus who need ten gigabit/s and faster bandwidth to deal with the avalanche of data coming from scientific instruments such as sequencers, microscopes and computing clusters,” said Philip Papadopoulos, principal investigator on the Prism@UCSD project, who splits his time between Calit2 and the university’s San Diego Supercomputer Center (SDSC). “We're starting at 1 Terabit/s of connected capacity through our next-generation modular switch, which is at the center of the Prism network. It can carry 20 times the traffic of our current research network, and it’s 100 times the bandwidth of the main campus network.”

With the addition of Prism to Calit2’s research network infrastructure, the aggregate bandwidth in the Calit2 network will now top one terabit per second – one trillion bits per second.
“You can think of Prism as the HOV lane,” added Papadopoulos, “whereas our very capable campus network represents the slower lanes on the freeway.”

“Prism@UCSD is a response to the growing challenge of Big Data,” said Calit2 Director Larry Smarr. “The key innovation in Prism@UCSD is to provide end-to-end dedicated large bandwidth to the end-users on campus.”

In the past decade, Smarr and Papadopoulos have collaborated on multiple NSF-funded projects to enable cheaper, faster and more energy-efficient scientific computing, storage and visualization. Their OptIPuter project developed a new computer networking paradigm, with optical networks – not computer processors – at the core. That led to Quartzite, an experimental network with reconfigurable optical fiber paths, and wavelength selective switching. The Quartzite core is now six years old, is at full capacity, consumes significant energy, and does not support software-defined networking (SDN) tools such as OpenFlow. Based on those realities and lessons learned in previous projects, Papadopoulos and Smarr were able to create a successful proposal to the National Science Foundation for a more robust, lower energy, faster, and easier to replicate design.

Prism builds on top of Quartzite, using a next-generation Arista Networks 7405 switch-router, which boasts triple the energy efficiency and four times the capacity of Quartzite’s switch. Prism will also expand the existing Calit2-SDSC optical-fiber connection.

“By the time Prism is built out, we will have expanded the SDSC-Calit2 link from 50 to 120Gbps, and it won’t cost very much to get it to 160Gbps,” said Papadopoulos. “Other campus labs then connect directly to the Prism core at Calit2 with dedicated links of between 20 and 80 Gigabit/s each. The structure allows a Prism-connected lab to saturate any of our external links, no matter where they land on campus. It also enables these labs to share data with each other or utilize high-end resources at SDSC. There is more than enough bandwidth in the switch to accommodate anything you can throw at it.” The Arista switch has full bisection bandwidth (as between clusters in a machine room) but it can be deployed at campus scale.

"Prism is the answer to how to move massive volumes of instrument data generated on and off campus to SDSC's powerful Big Data computing and storage resources, Gordon and Data Oasis,” said SDSC Director Michael Norman. “Prism will unleash the scientific potential energy of a number of frontier science projects that have been bandwidth limited."

The network will be a hybrid – part “production” infrastructure for real-world use, part “experimental” system for researchers to test out networking ideas. On the production side, the campus is counting on Prism to reduce congestion on the main UCSD network by moving traffic from a few hundred researchers in the most data-intensive fields onto Prism, where they can work with huge data sets that might otherwise clog the campus infrastructure – a state of-the-art infrastructure that has to serve over 30,000 people.

“The Prism Big Data network also creates a high-capacity ‘data freeway’ to campus, national or international networks,” added Smarr.

Case in point: UCSD physics professor Frank Wuerthwein’s lab is the only Open Science Grid (OSG) node on the UCSD campus, and the lab’s cluster hosts massive amounts of data from the Large Hadron Collider.

“We want to expand the presence of OSG on this campus,” said Wuerthwein, who has signed up to use Prism@UCSD. “For the really big data we are holding – petabytes of Large Hadron Collider data, for instance – it is nice to have a network where we can transmit terabytes of data without killing the campus network in the process.”

“The most data-intensive scientific applications get the most value out of using dedicated ‘fat’ pipes with the ability to accommodate short, extreme-sized bursts of data,” said Papadopoulos. “We believe Prism will be the forerunner of specialized, Big Data cyberinfrastructures on many research campuses – and beyond.”

Prism will also add a trunk line to the Computer Science and Engineering building, to serve users such as the Center for Networked Systems (CNS). CNS research scientist George Porter and his students use the SEED cluster for Big Data analysis. “One graduate student might work on a 100TB to 200TB data set, and there is only room for one of those at a time on that cluster,” said Porter. “So if you wanted to swap data sets, you’d kill the campus network, or you would have to stretch it out over the course of days.”

Another major campus user of Prism will be the National Center for Microscopy and Imaging Research (NCMIR), led by professor Mark Ellisman. “We run our own facilities that house petabytes of data distributed across three sites on campus,” said Ellisman. “So being able to move around the data to wherever it is needed is extremely important. We intend to use Prism for our machine room-to-machine room backplane for day-to-day operations.”

Added Ellisman: “We will also be able to use it to burst out very large data sets that are generated on NCMIR's array of microscopes and then analyze the data on various Big Data infrastructures that reside physically in different locations on the UCSD campus.”

“NCMIR was one of the pioneering science projects that drove the OptIPuter project almost a decade ago,” noted Papadopoulos. “It’s important for us that a research center with deep knowledge and experience in this arena can really push the envelope and test the limits of how well the Prism network stands up to the needs of the biggest users. Over time, we expect other research groups to follow NCMIR’s lead as they begin to handle massive-scale data sets.”

According to Papadopoulos, the first constraint in sharing large-scale data at UCSD today is that the many labs that have built up terabytes, cannot easily move the data at will. “This is a first, essential step in a larger data capability that will touch all corners of UCSD and be fundamentally imagined and made real by a very large group of researchers,” he noted.

According to Calit2’s Smarr, if Prism is a success at UCSD, the project will explore ways to give nearby research labs access to the network – even if they aren’t on campus. “UC San Diego has a symbiotic relationship with nearby biotech firms and research institutions on the Torrey Pines Mesa, institutions such as Salk, The Scripps Research Institute, the Sanford Stem Cell Consortium, and Sanford-Burnham,” said Smarr. “We are entering the era of integrated, personalized ‘omics,’ and for San Diego to be a leader, we need to share biomedical data across the Mesa, regardless of which lab generates it.”

Most of the NSF funds will be spent on hardware, but Prism will also offer part-time jobs to undergraduate students who help operate the network, while learning about software-defined networking technology. According to Papadopoulos, applicants will have to be “self-starters with a technical bent,” preferably with a background in computer science or networking. In addition, a summer workshop aimed at minority-serving institutions will build on Calit2 and SDSC's tradition of diversity outreach.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
HIV Structure Stabilized
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Antibodies To Dengue May Alter Course Of Zika Virus Infection
Scientists at Emory Vaccine Center, in collaboration with investigators from Thailand, have found that people infected with dengue virus develop antibodies that cross-react with Zika virus.
Some Women With PCOS May Have Adrenal Disorder
Researchers at NIH have found that a subgroup of women with PCOS, a leading cause of infertility, may produce excess adrenal hormones.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!