Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fibrocell/UCLA Study on Human Skin Cells Yields Promising Results

Published: Thursday, March 21, 2013
Last Updated: Thursday, March 21, 2013
Bookmark and Share
Research has resulted in a discovery that may lead to a more predictable, commercially viable method of producing stable, induced pluripotent stem (iPS) cells from adult skin cells.

The study has been accepted for publication in the Stem Cell Research and Therapy peer-reviewed journal and the provisional paper is available online. It was conducted under the guidance of James Byrne, PhD, assistant professor, UCLA Department of Molecular and Medical Pharmacology, at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

“We continue to be pleased with the results of our collaboration with UCLA to pursue the full potential of fibroblasts,” said David Pernock, CEO and Board Chair, Fibrocell Science.

The cells may be used by academic researchers and pharmaceutical companies to evaluate new drug compounds for safety and to develop patient-specific therapies for multiple disease states, including heart disease, Parkinson’s disease and diabetes. Using skin cells is more advantageous to the patient than obtaining cells from bone marrow or adipose tissue (fat). A skin biopsy is quicker to perform, less painful and minimally invasive.

Dr. Byrne’s study found human skin cells cultured in the presence of a chemical known as BAY11 resulted in reproducible increased expression of the OCT4 gene that did not inhibit normal cell growth. OCT4 is involved in many cell processes, but is primarily known to maintain pluripotency and regulate cell differentiation. It is typically used as a marker to identify undifferentiated cells.

The development of a more stable method to create iPS cells from skin cells allows for the potential of a reproducible commercial manufacturing process. The study was performed at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Department of Molecular and Medical Pharmacology at UCLA in conjunction with the Department of Cell Biology and Neuroscience at Rutgers University.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fibrocell, Intrexon Announce Collaboration
Companies to develop best-in-class treatment for arthritis and related conditions through targeted, long-term therapeutic delivery while sparing systemic effects.
Tuesday, January 05, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Charles River Acquires Agilux
Enhances Charles River’s early-stage capabilities in bioanalytical services.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!