Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scripps Research Institute Study Underlines Potential of New Technology to Diagnose Disease

Published: Tuesday, March 26, 2013
Last Updated: Tuesday, March 26, 2013
Bookmark and Share
The novel method points to new blood tests for conditions from Alzheimer’s to autoimmune diseases.

Researchers at The Scripps Research Institute (TSRI) in Jupiter, FL, have developed cutting-edge technology that can successfully screen human blood for disease markers. This tool may hold the key to better diagnosing and understanding today’s most pressing and puzzling health conditions, including autoimmune diseases.

“This study validates that the ‘antigen surrogate’ technology will indeed be a powerful tool for diagnostics,” said Thomas Kodadek, PhD, a professor in the Departments of Chemistry and Cancer Biology and vice chairman of the Department of Chemistry at TSRI, whose group developed the technology.

The latest study, published in the journal Chemistry & Biology on March 21, 2013, shows how the technology accurately identified human blood markers for neuromyelitis optica (NMO), a rare autoimmune disorder resembling multiple sclerosis that can result in blindness and paralysis. Following a similar study on mouse models for multiple sclerosis two years ago, the work confirms that the technique can also be successfully applied to humans.

Finding the Needle in a Haystack

The blood is filled with molecules called “antibodies” released by the immune system to defend the body against disease. Many autoimmune diseases produce antibodies specific to that disease. Identifying these disease-specific antibodies among the millions of other similar yet non-disease-specific antibodies in the blood, however, is much like finding a needle in a haystack.

Many current diagnostic methods detect disease-specific antibodies by using part of the virus, bacteria or cellular component targeted by the antibody in a patient’s body, essentially “fishing” for the antibody using its distinct target as bait. Unfortunately, many disease-specific antibodies and their targets are currently unidentified.

Kodadek and his colleagues have found a way to sidestep this conundrum by substituting these unknown antibody-binding targets with biologically unnatural molecules called “peptoids.” Peptoids are chain-like molecules tethered to tiny beads and extended “link by link” by the sequential addition of small chemical subunits. By using different subunits and randomizing their order, chemists can produce libraries of thousands and even millions of different peptoids quickly and easily.

These vast libraries are screened for peptoid “hits” that bind exclusively to antibodies found only in patients known to have a specific disease. “We find disease biomarkers differently [than anyone else],” explained Kodadek. “This enables new disease biomarker detection.” Additionally, by using these peptoid hits to “fish” for disease-specific antibodies, the system enables disease-specific antibody detection without first knowing the antibodies’ natural binding targets.

A Diagnostic Revolution

Using this technology, the group identified several peptoids that bound exclusively to antibodies in NMO patient blood serum and not healthy patients or patients with similar diseases, including multiple sclerosis, lupus, Alzheimer’s disease and narcolepsy. At least one of the peptoids bound to an antibody that is well known to be associated with NMO.

The study builds on technology that the group successfully used to identify disease markers in mouse models for multiple sclerosis, introduced in a January 2011 publication in the journal Cell. “[Our latest study] is proof positive that our technology works in complex human systems as well,” explained Kodadek.

Kodadek noted the new study also introduced a technical advance that increases the technology’s utility, significantly improving the peptoid library screening process. This step initially involved the time-consuming and painstakingly tedious task of removing peptoids from beads and refixating them to a different solid support, called a microarray.

 “This is the first time we screened peptoid libraries directly on the beads [on which they were made] instead of using microarrays,” said Bindu Raveendra, PhD, staff scientist who was a first author of the study with postdoctoral researcher Wu Hao. “Previously, we could screen thousands of peptoids at a time; now, we can now screen millions. That just wasn’t feasible using microarrays.”

In addition to Raveendra, Hao and Kodadek, authors of the paper “Discovery Of Peptoid Ligands For Anti-Aquaporin 4 Antibodies” are Roberto Baccala and Argyrios N. Theofilopoulos of the TSRI Immunology & Microbial Science Department, M. Muralidhar Reddy and Jessica Schilke of Opko Health and Jeffrey L. Bennett of the University of Colorado School of Medicine Neurology and Ophthalmology Department.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drug Design Strategy to Improve Breast Cancer Treatment
Scientists develop novel structure-based drug design strategy aimed at altering the basic landscape of hormone-driven breast cancer treatment.
Wednesday, November 23, 2016
How Protein Senses Touch
New study reveals Piezo 1, a protein discovered in 2010, is directly responsible for sensing touch.
Tuesday, November 15, 2016
Immune Cells May Facilitate Tumor Growth
Research shows macrophages create vessel-like structures to deliver oxygen and nutrients to tumours, offering a new target for treatment.
Monday, November 14, 2016
Scientists Uncover Why Hepatitis C Vaccine is Difficult to Make
Scientists have uncovered one reason why a successful hepatitis C vaccine continues to be elusive.
Thursday, October 27, 2016
Grant to TSRI-Led Consortium Increased by $87M
NIH funding, as part of the Precision Medicine Initiative, has been increased from $120M to £207M.
Thursday, October 06, 2016
Disordered Protein 'Shape Shifts' to Avoid Crowding
Study suggests disordered protein escapes from the cell membrane when it runs out of space.
Wednesday, September 21, 2016
Antibodies that Target Holes in HIV's Defence Identified
Scientists suggest 'holes' in HIV sugar sheild can be targeted by antibodies.
Friday, September 16, 2016
'Missing Evolutionary Link' of a Widely Used Natural Drug Source Found
A well-known family of natural compounds, called “terpenoids,” have a curious evolutionary origin. In particular, one question relevant to future drug discovery has puzzled scientists: exactly how does Nature make these molecules?
Tuesday, August 30, 2016
‘Lead Actors’ in Immune Cell Development Uncovered
A new study, led by scientists at The Scripps Research Institute (TSRI), reveals a surprising twist in immune biology.
Tuesday, August 30, 2016
'Missing Evolutionary Link' of Natural Drug Source Found
Scripps Florida study finds 'missing evolutionary link' of a widely used natural drug source
Monday, August 22, 2016
4 Billion-Year-Old RNA Synthesized
TSRI are one step closer to the lab recreation of the "RNA world" of 4 billion years ago.
Wednesday, August 17, 2016
Surprising Twist in Immune Biology
TSRI researchers have found the ‘lead actors’ in immune cell development, shedding light on casues of autoimmune disease.
Wednesday, August 03, 2016
Influencing the Immune System
A TSRI study has opened the door to influencing the immune system, yielding possible boosts to vaccine efficiency and immunology.
Tuesday, August 02, 2016
Drug Candidates Reduce Abnormal Protein Production
New drug candidates improve cell ability to catch miss-folded proteins that could cause deadly diseases.
Friday, July 22, 2016
Scientists Link Bipolar Disorder to Unexpected Brain Region
Researchers from The Scripps Research Institute have found that gene within the brain’s striatum could be linked to biopolar disorder.
Wednesday, July 20, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!