Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Reveals How Serotonin Receptors Can Shape Drug Effects from LSD to Migraine Medication

Published: Tuesday, March 26, 2013
Last Updated: Tuesday, March 26, 2013
Bookmark and Share
A team of scientists has determined and analyzed the high-resolution atomic structures of two kinds of human serotonin receptor.

The new findings help explain why some drugs that interact with these receptors have had unexpectedly complex and sometimes harmful effects.

“Understanding the structure-function of these receptors allows us to discover new biology of serotonin signaling and also gives us better ideas about what biological questions to probe in a more intelligent manner,” said TSRI Professor Raymond Stevens, who was a senior investigator for the new research. The studies were published in two papers on March 21, 2013 in Science Express, the advance online version of the journal Science.

Pioneering Important Molecular Structures

Stevens’s laboratory at TSRI has pioneered the development of techniques for determining the 3D atomic structures of cellular receptors—particularly the large receptor class known as G protein-coupled receptors (GPCRs). GPCRs sit in the cell membrane and sense various molecules outside cells. When certain molecules bind to them, the receptor's respond in a way to transmit a signal inside the cell.

“Because G protein-coupled receptors are the targets of nearly 50 percent of medicines, they are the focus of several major National Institutes of Health (NIH) initiatives,” said Jean Chin of the NIH’s National Institute of General Medical Sciences, which partly funded the work through the Protein Structure Initiative. “These detailed molecular structures of two serotonin receptor subfamilies bound to antimigraines, antipsychotics, antidepressants or appetite suppressants will help us understand how normal cellular signaling is affected by these drugs and will offer a valuable framework for designing safer and more effective medicines.”

In the past several years, using X-ray crystallography, the Stevens laboratory has determined the high-resolution structures of 10 of the most important GPCRs for human health—including the β2 adrenergic receptor, the A2a adenosine receptor (the target of caffeine), HIV related CXCR4 receptor, the pain-mediating nociceptin receptor, S1P1 receptor important for inflammatory diseases, H1 histamine receptor (antihistamine medications) and the D3 dopamine receptor which is involved in mood, motivation and addiction.

Serotonin receptors are no less important. “Nearly all psychiatric drugs affect serotonin receptors to some extent, and these receptors also mediate a host of effects outside the brain, for example on blood coagulation, smooth muscle contraction and heart valve growth,” said Bryan Roth, a collaborator on both studies who is professor of pharmacology at the University of North Carolina (UNC).

Untangling Two Serotonin Receptors

Roth’s laboratory teamed up with Stevens’s as part of the National Institute of General Medical Sciences (NIGMS) Protein Structure Initiative. For this project the two labs also worked with the laboratories of Professors Eric Xu and Hualiang Jiang at the Shanghai Institute of Materia Medica, part of the Chinese Academy of Sciences. “By collaborating with the Chinese teams we were able to complete a much more thorough study and get the most out of our fundamental structural results,” said Stevens.

In the first of the new studies, co-lead author Chong Wang, a graduate student in the Stevens laboratory, and his colleagues determined the structure of the serotonin receptor subtype 5-HT1B, the principal target of several drug classes. (5-HT, or 5-hydroxytryptamine, is a technical term for serotonin.) The team produced the 5-HT1B receptor while it was bound by either ergotamine or dihydroergotamine—two old-line anti-migraine drugs that work in part by activating 5-HT1B receptors.
With the help of the special fusion protein, nicknamed BRIL (apocytochrome b562RIL), Wang and colleagues were able to stabilize these structures and coax them to line up in a regular ordering known as a crystal. X-ray crystallography revealed, at high resolution, an atomic structure of 5-HT1B with a main binding pocket and a separate, extended binding pocket.

Harmful Off-Target Effects

In the second study, TSRI graduate student and lead author Daniel Wacker and colleagues used similar techniques to determine the structure of the 5-HT2B receptor bound to ergotamine. The 5-HT2B receptor was chiefly of interest because drug developers want to avoid activating it.

“Drugs that are meant to target other serotonin receptors in the brain can have harmful off-target effects on 5-HT2B receptors, which are found abundantly on heart valves, for example,” said Roth. The weight-loss drug fenfluramine and closely related dexfenfluramine were withdrawn from the US market in 1997 after being linked to heart valve disease. Roth’s laboratory later showed that this side effect was mediated by heart valve 5-HT2B receptors.

Analyses of the 5-HT1B and 5-HT2B receptor structures revealed a subtle difference between them. “Although their main binding pockets look very similar, their extended binding pockets are not as similar—the one for 5-HT2B is narrower and in a slightly different position,” said Wang.

With the two receptor structures in hand, the Xu and Jiang team simulated the bindings of various drugs. They showed, for example, that anti-migraine drugs called triptans should bind well to 5-HT1B receptors but poorly to 5-HT2B receptor structures, in which the extended binding pocket is less accessible. Similarly, the team’s calculations confirmed that fenfluramine’s active metabolite should bind very tightly to the 5-HT2B receptor.

Delving Deeper

In the second study, the researchers used the 5-HT2B and 5-HT1B structural data to better understand a recently discovered GPCR signaling pathway.

When a neurotransmitter such as serotonin binds to its GPCR receptor and triggers the primary, G protein-mediated activation signal, it also usually triggers another signal, often mediated by a protein called β-arrestin. This second signaling cascade may simply have the effect of “arresting” or inhibiting the primary, G protein-mediated signaling. But it can also have other effects on the cell, and although most molecules bind to their target GPCRs in a way that activates these primary and secondary signals equally, others preferentially activate one or the other. “Such functional selectivity, as we call it, adds another layer of complexity to drug effects on GPCRs,” said Roth, a co-senior author of the study.

Roth’s laboratory produced several 5-HT receptor subtypes in test cells, and compared the strength of G-protein and β-arrestin signaling when these receptors were bound by ergotamine or various other drugs, including the ergotamine-derived hallucinogen LSD (lysergic acid diethylamide). Most of the tested drugs showed no bias. However, ergotamine, LSD and some of their relatives turned out to be clearly biased in favor of β-arrestin signaling at the 5-HT2B receptor. Comparison of the ergotamine-bound 5-HT2B structure with the ergotamine-bound 5-HT1B structure revealed the likely reason. “We could see that when ergotamine is bound to the 5-HT2B receptor it stabilizes the receptor structure in a conformation that interferes with G protein signaling,” said Wacker.

The findings allow scientists to start probing this arrestin-mediated signaling pathway and its downstream effects in a more targeted manner. “These structural data are teaching us to ask better questions about receptor biology,” said Stevens.

In addition to Chong, the two other first authors of the first study, “Structural Basis for Molecular Recognition at Serotonin Receptors,” were Yi Jiang, a researcher in the Stevens laboratory who was visiting from the Xu laboratory in Shanghai, and Jinming Ma, a researcher in the Stevens laboratory who was visiting from the Van Andel Research Institute in Michigan, where Xu runs a laboratory. Other contributors to this study were Huixian Wu, Daniel Wacker, Vsevolod Katritch, Gye Won Han, Wei Liu and Vadim Cherezov of TSRI; Xi-Ping Huang, Eyal Vardy and John D. McCorvy of Roth’s laboratory at UNC; Xiang Gao, Edward X. Zhou, Karsten Melcher and Chenghai Zhang of the Van Andel Research Institute; Fang Bai of the Dalian University of Technology in China; and Huaiyu Yang, Linlin Yang of Xu and Jiang laboratories in Shanghai.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Wednesday, May 25, 2016
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Tuesday, May 24, 2016
Making Genetic Data Easier to Search
Scripps team streamlines biomedical research by making genetic data easier to search.
Tuesday, May 17, 2016
Potent Therapeutic 'Warheads' That Target Cancer Cells
Scripps scientists have developed molecular “warheads” that could be used to treat cancer.
Tuesday, May 17, 2016
Predicting Cell Changes that Affect Breast Cancer Growth
Researchers find small structural changes in a key breast cancer receptor that can predict cancer growth.
Tuesday, May 03, 2016
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Wednesday, April 27, 2016
First ‘Teenage’ HIV-Neutralizing Antibody Discovered
Scientists have studied the evolution of anti-HIV antibodies, with hopes of creating a vaccine to prevent AIDS.
Wednesday, April 06, 2016
Discovering 'Outlier' Enzymes
Researchers at TSRI and Salk Institute have discovered 'Outlier' enzymes that could offer new targets to treat type 2 diabetes and inflammatory disorders.
Saturday, April 02, 2016
Encouraging Foundation for Upcoming AIDS Vaccine Clinical Trial
Engineered vaccine protein binds key immune cells that exist in nearly everyone.
Tuesday, March 29, 2016
New Approach to Curbing Cancer Cell Growth
Using a new approach, scientists at The Scripps Research Institute (TSRI) and collaborating institutions have discovered a novel drug candidate that could be used to treat certain types of breast cancer, lung cancer and melanoma.
Monday, March 14, 2016
Vaccine Against Dangerous Designer Opioids
With use of synthetic opioid "designer drugs" on the rise, scientists from The Scripps Research Institute (TSRI) have a new strategy to curb addiction and even prevent fatal overdoses.
Thursday, February 18, 2016
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Friday, October 02, 2015
Key Morphine Regulator Identified
The findings could lead to less addictive pain medications.
Thursday, September 24, 2015
$6 Million Awarded to Develop Alternative HIV/AIDS Vaccine
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded up to nearly $6 million from the Bill & Melinda Gates Foundation to develop a revolutionary HIV/AIDS alternative vaccine that has demonstrated great potential in animal models.
Thursday, September 24, 2015
Novel Role of Mitochondria in Immune Function Identified
Scientists at The Scripps Research Institute (TSRI) have discovered a new role for an enzyme involved in cell death.
Monday, September 21, 2015
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
3-D Atomic Structure of Cholesterol Transporter
Researchers at UTSW have determined the 3-D atomic structure of a human sterol transporter that helps maintain cholesterol balance.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Can We Break the Link Between Obesity and Diabetes?
Columbia University researchers identify a key molecule involved in the development of type 2 diabetes.
Fungi – A Promising Source Of Chemical Diversity
Moulds and plants share similar ways in alkaloid biosynthesis .
How Prions Kill Neurons: New Culture System Shows Early Toxicity to Dendritic Spines
Boston University researchers have developed a cell culture system to study prions.
Great Migration and African-American Genomic Diversity
Study examines genetic data to analyze regional differences in ancestry.
Faster, More Efficient CRISPR Editing
UC Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the new gene-editing tool.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!