Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How Peach Genome Can Offer Insights into Breeding Strategies for Biofuels Crops

Published: Tuesday, March 26, 2013
Last Updated: Tuesday, March 26, 2013
Bookmark and Share
In the March 24 edition of Nature Genetics, Schmutz and several colleagues were part of the International Peach Genome Initiative (IPGI) that published the 265-million base genome of the Lovell variety of Prunus persica.

Rapidly growing trees like poplars and willows are candidate “biofuel crops” from which it is expected that cellulosic ethanol and higher energy content fuels can be efficiently extracted.  Domesticating these crops requires a deep understanding of the physiology and genetics of trees, and scientists are turning to long-domesticated fruit trees for hints. The relationship between a peach and a poplar may not be obvious at first glance, but to botanists both trees are part of the rosid superfamily, which includes not only fruit crops like apples, strawberries, cherries, and almonds, but many other plants as well, including rose that gives the superfamily its name.  

 “The close relationship between peach and poplar trees is evident from their DNA sequence,” said Jeremy Schmutz, head of the Plant Program at the U.S. Department of Energy Joint Genome Institute (DOE JGI) and a faculty investigator at the HudsonAlpha Institute for Biotechnology.

In the March 24 edition of Nature Genetics, Schmutz and several colleagues were part of the International Peach Genome Initiative (IPGI) that published the 265-million base genome of the Lovell variety of Prunus persica.

“Using comparative genomics approaches, characterization of the peach sequence can be exploited not only for the improvement and sustainability of peach and other important tree species, but also to enhance our understanding of the basic biology of trees,” the team wrote.  They compared 141 peach gene families to those of six other fully sequenced diverse plant species to unravel unique metabolic pathways, for instance, those that lead to lignin biosynthesis—the molecular “glue” that holds the plant cells together—and a key barrier to deconstructing biomass into fuels.

For bioenergy researchers, the size of the peach genome makes it ideal to serve as a plant model for studying genes found in related genomes, such as poplar, one of the DOE JGI’s Plant Flagship Genomes (http://bit.ly/JGI-Plants), and develop methods for improving plant biomass yield for biofuels.

“One gene we’re interested in is the so-called “evergreen” locus in peaches, which extends the growing season,” said Daniel Rokhsar, DOE JGI Eukaryotic Program head under whose leadership sequencing of the peach genome began back in 2007. “In theory, it could be manipulated in poplar to increase the accumulation of biomass.”

The publication comes three years after the International Peach Genome Consortium publicly released the draft assembly of the annotated peach genome on the DOE JGI Plant portal Phytozome.net and on other websites. The decision to sequence the peach genome was first announced during the 2007 Plant and Animal Genome XI Conference. Learn more about poplar and DOE JGI Plant Flagship Genomes at http://genome.jgi.doe.gov/programs/plants/flagship_genomes.jsf.

In the United States, the Initiative was funded by the U.S. Department of Energy Office of Science and led by researchers at the DOE JGI, The HudsonAlpha Institute for Biotechnology, Clemson University, North Carolina State University, and Washington State University. Additional support was contributed by U.S. Department of Agriculture and by the Energy Biosciences Institute, of the University of California, Berkeley, who supported senior author Therese Mitros. The Italian government also supported this international effort, including the work of first author Ignazio Verde of the Fruit Tree Research Centre/Agricultural Research Council in Rome, Italy. Contributions were also made from research institutes in Chile, Spain, and France.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!