Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

46 Gene Sequencing Test for Cancer Patients on the NHS

Published: Wednesday, March 27, 2013
Last Updated: Wednesday, March 27, 2013
Bookmark and Share
The first multi-gene test that can help predict cancer patients' responses to treatment using the latest DNA sequencing techniques has been launched in the NHS.

The test detects mutations across 46 genes in cancer cells, mutations which may be driving the growth of the cancer in patients with solid tumours. The presence of a mutation in a gene can potentially determine which treatment a patient should receive.

The researchers say the number of genes tested marks a step change in introducing next-generation DNA sequencing technology into the NHS, and heralds the arrival of genomic medicine with whole genome sequencing of patients just around the corner.

The new £300 test could save significantly more in drug costs by getting patients on to the right treatments straightaway, reducing harm from side effects as well as the time lost before arriving at an effective treatment.

The many-gene sequencing test has been launched through the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), a collaboration between Oxford University Hospitals NHS Trust and Oxford University.

The BRC Molecular Diagnostics Centre carries out the test. The lab, based at Oxford University Hospitals, covers all cancer patients in the Thames Valley area. But the scientists are looking to scale this up into a truly national NHS service through the course of this year.

'We are the first to introduce a multi-gene diagnostic test for tumour profiling on the NHS using the latest DNA sequencing technology,' says Dr Jenny Taylor of the Wellcome Trust Centre for Human Genetics at Oxford University, who is programme director for Genomic Medicine at the NIHR Oxford BRC and was involved in the work. 'It's a significant step change in the way we do things. This new 46 gene test moves us away from conventional methods for sequencing of single genes, and marks a huge step towards more comprehensive genome sequencing in both infrastructure and in handling the data produced.'

Dr Anna Schuh, who heads the BRC Molecular Diagnostics Centre and is a consultant haematologist at Oxford University Hospitals, adds: 'Patients like the idea of a test that can predict and say up front whether they will respond to an otherwise toxic treatment. What the patient sees is no different from present. A biopsy is taken from the patient's tumour for genetic testing with a consultant talking through the results a few days later. It is part of the normal diagnostic process.'

Getting on the right treatment

Cancer is often described as a genetic disease, since the transition a cell goes through in becoming cancerous tends to be driven by changes to the cell's DNA. And increasingly, new cancer drugs depend on knowing whether a mutation in a single gene is present in a patient's cancer cells.

For example, a lung cancer patient may have a biopsy taken to check for changes in the EGFR gene. If there is a mutation, the patient may then be treated with a drug that works as an EGFR inhibitor. If there is no mutation, such drugs won't work and the patient would get a different drug that would be more effective for them. Knowing the presence or absence of mutations in a certain gene can choose the treatment path for that patient.

The NHS can currently test for mutations in 2 or 3 genes – genes called BRAF, EGFR or KRAS – using older sequencing technology that has been around for decades. Efforts are being made to look at increasing the number of cancer genes sequenced to nine as standard.

The Oxford scientists are the first to make such multi-gene tests possible in the NHS using the latest DNA sequencing techniques. The NHS service they have launched looks for mutations in 46 genes, and they are now working towards verifying the use of a test involving 150 genes.

The team estimates they may have used the 46 gene test with a few hundred patients since November. The Cancer and Haematology Centre at the Churchill hospital in Oxford sees perhaps 8,000 new cancer patients a year. So while this isn’t yet an automatic service for every cancer patient that comes through the door, it is ramping up quickly for many groups of patients.

There is definite clinical benefit in screening some of the 46 genes included in the test; there is probable or likely benefit in screening some of the others; mutations in further genes might be important in some cancers but not others; while with the other genes, we don’t know as yet. But having this information means researchers can investigate whether a mutation has biological significance.

Accessing clinical trials

As well as detecting mutations in the 9 or 10 genes that are already 'actionable' – mutations that may help determine the course of treatment for some patients with some cancers – the 46 gene test can help in directing patients to clinical trials of new molecular therapies which depend on knowing the genetic profile of the cancer.

Jack Taylor, 71, a retired management consultant from Milton Keynes, is taking part in one of a number of such clinical trials run by the University of Oxford.

He was diagnosed with a malignant melanoma on his chin in summer 2012, which was then surgically removed. It became clear that the cancer had spread to other parts of his body and a biopsy of the cancer was tested to look for mutations in the BRAF gene.

Around half of melanomas show mutations in the BRAF gene, and patients can be put on BRAF inhibitor drugs. But Jack's cancer doesn't, and he wouldn't benefit from the drugs.

But knowing his melanoma doesn't have any mutations in the BRAF gene, last month he was able to join a clinical trial led by Professor Mark Middleton in the Department of Oncology at the University of Oxford.

The PACMEL study is a phase II trial for those whose melanomas show no mutations in the BRAF gene. It is testing whether a new drug called Trametinib, in combination with chemotherapy using Taxol, offers a better prognosis with melanoma that has spread to other parts of the body.

It's too early to say whether Trametinib may have any effect on cancer progression. Jack says, 'My prognosis back in August was 6-9 months.' He says he feels similar now: 'It doesn't feel like I just have months left. Nobody can tell.

'Hopefully [the trial] will do something for me. If it is successful, then it has been done on me rather than waiting for someone else to do the trial. I was very happy to go into the trial. Let's go for it.'

There have been side-effects of the treatment. Jack feels constantly tired, and has experienced a severe rash on his face which is painful and he is receiving treatment for it.

Jack misses playing golf three times a week and going to the gym three times a week. 'I was very, very active,' he says. 'That's the thing I regret most. That's not the trial, the treatment. It's the cancer.
'I'm hoping that once the rash clears up and I've got some energy back I'll get out on the golf course to at least play 10 holes if not 18,' he says.

Changing cancer medicine

Having a diagnostic test or 'panel that can screen for mutations in multiple genes at once will be important for access to all the new cancer drugs that are coming along.

'It will be very difficult to manage in NHS diagnostic labs without gene panels,' explains Dr Schuh. 'Currently, new cancer drugs tend to get approved alongside a diagnostic test specific to that drug which can determine which patients will benefit. But as more and more drugs like this come along, we can't possibly run all the many different separate tests this could mean. We need one test for a range of drugs.'

Dr Taylor adds: 'We wanted a test that would use the latest DNA sequencing techniques to detect a wide range of mutations in a wide range of genes. A test that would be able to cover more cancers and more treatments, all for a similar cost to conventional methods.'

The test is run on a next generation sequencing platform from Life Technologies Corporation. The test and accompanying software have been substantially modified as requested by the Oxford team to fulfil diagnostic standards in their lab.

This work was co-funded by the Technology Strategy Board, the UK's innovation agency, through a grant to the NIHR Oxford BRC, Life Technologies Corporation, AstraZeneca, and Janssen Research & Development, LLC, one of the Janssen Pharmaceutical Companies.

As part of the test development, the Oxford team looked to improve the initial sample preparation in the lab, and to provide the software and infrastructure support to handle and analyse the amount of information involved. Most importantly, the Oxford group has carried out tests and comparisons to verify the robustness of the technique with cancer biopsies direct from patients.

The team compared the new 46 gene test against conventional techniques for 80 consecutive cancer biopsies in the hospital lab's workflow. The next-generation DNA sequencing method detected all the mutations the conventional method did; it detected new mutations the conventional method didn't; and detected mutations present at much lower levels in the samples. The time taken for the 46 gene test also fitted into the standard turnaround time for samples at the lab.

Dr Schuh says: '"Panel" tests have significant potential while we wait for the cost of sequencing whole patient genomes to come down. Even then, panel tests may be with us for some time. After whole genome sequencing does come into use, it may be that panel tests are used first with patients’ biopsies, with only those whose panel test shows no result having their entire DNA sequenced to look for rarer genetic changes.'

Lord Howe, Health Minister in the UK Department of Health, comments: 'We want to be among the best countries in the world at treating cancer and know that better tailored care for patients could potentially save lives.

'Health research like this is incredibly important and I'm delighted we could support the work of researchers in Oxford through the National Institute for Health Research Biomedical Research Centre.

'By rapidly translating findings from genetics research into real benefits for patients, their work will make sure that patients get the right treatments straight away, reduce potential side effects and also help us use NHS funds more effectively.'

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Seeking the Right Prescription in Fight Against Antibiotic Resistance
Researchers at the University of Oxford have received funding to look at ways to improve the prescribing of antibiotics.
Monday, November 23, 2015
£17M Project Launched to Develop HIV Vaccine
A new €23 million (£17 million) initiative to accelerate the search for an effective HIV vaccine has begun.
Wednesday, November 11, 2015
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Tuesday, November 10, 2015
Mini DNA Sequencer’s Data Belies its Size
A miniature DNA sequencing device that plugs into a laptop and was developed by Oxford Nanopore has been tested by an open, international consortium, including Oxford University researchers.
Tuesday, October 20, 2015
Microbe Artwork Shows The Limits Of Antibiotics
An Oxford University research fellow has been creating art using bacteria found in the human gut and harvested from faecal samples.
Tuesday, September 29, 2015
Funding Boost for Diabetes Research
Programme of research could be a game-changer for people with Type 1 diabetes and insulin-dependent Type 2 diabetes.
Friday, July 24, 2015
Ebola Vaccine Trial Begins in Senegal
A clinical trial to evaluate an Ebola vaccine has begun in Dakar, Senegal, after initial research started at the Jenner Institute, Oxford University.
Thursday, July 16, 2015
New Insight into Recombination and Sex Chromosomes
Not only does the platypus have some odd physical features, an updated version of its genome has also underscored the unusual genetic characteristics that it harbors.
Tuesday, May 12, 2015
Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
Oxford Vaccine Group Begins First Trial of New Ebola Vaccine
Oxford University doctors and scientists are starting the first safety trial of an experimental preventative Ebola vaccine regimen being developed by the Janssen Pharmaceutical Companies of Johnson & Johnson (Janssen).
Wednesday, January 07, 2015
New Vaccine Generates Strong Immune Response Against Hepatitis C
A new hepatitis C vaccine has shown promising results in an early clinical trial at Oxford University, generating strong and broad immune responses against the virus causing the disease.
Friday, November 07, 2014
Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
A-maize-ing Double Life of a Genome
Study findings could help current efforts to improve existing crop varieties.
Tuesday, July 15, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Antibiotics on Our Plates 'Could Lead to Health Catastrophe'
Two medical experts from The University of Queensland are urging China to curb its use of antibiotics in animals to avoid what could be a ‘major health catastrophe’ for humans.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos