Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

New Foot-and-Mouth Vaccine is Safer and Cheaper to Produce

Published: Thursday, March 28, 2013
Last Updated: Thursday, March 28, 2013
Bookmark and Share
A new vaccine against foot-and-mouth disease that is safer to produce and easier to store has been developed by scientists from the University of Oxford and The Pirbright Institute.

They have used a new method to produce a vaccine that doesn't rely on inactivating the live, infectious virus which causes the disease – and is therefore much safer to produce.

Instead the vaccine consists of empty virus shells that have been produced synthetically, and are designed to produce an immune response that protects against the disease.

Furthermore, the empty shells have been engineered to be more stable, making the vaccine much easier to store because the need for the vaccine to be refrigerated is reduced.

The 2001 foot and mouth outbreak in Britain was devastating and cost the economy billions of pounds in control measures and compensation. One recommendation in a Royal Society report following the epidemic recommended the development of new approaches to control the virus.

An improved vaccine against the disease would also be important in countries where the disease is endemic, which are often in the developing world.

The research was led by Professor David Stuart, professor of structural biology at the University of Oxford and life science director at Diamond Light Source, and Dr Bryan Charleston of The Pirbright Institute. The findings are published in the journal PLOS Pathogens.

'What we have achieved here is close to the holy grail of foot-and-mouth vaccines. Unlike the traditional vaccines, there is no chance that the empty shell vaccine could revert to an infectious form,' says Professor Stuart.

Dr Charleston adds: 'The ability to produce a vaccine outside of high containment and that does not require a cold storage chain should greatly increase production capacity and reduce costs. Globally there is an undersupply of the vaccine due to the high cost of production and this new development could solve this problem and significantly control foot-and-mouth disease worldwide.'

Early clinical trials of the new vaccine in cattle have shown it is as effective as current vaccines. Whilst a commercial product is still several years away, the team hopes that the technology can be transferred as quickly as possible to make it available to a global market.

One of the problems of existing vaccines against foot and mouth disease is identifying which animals have been vaccinated and which haven't.

Dr Charleston says: 'The complete absence of some viral proteins from this new vaccine will also allow companion diagnostic tests to be further refined to demonstrate the absence of infection in vaccinated animals with greater confidence.'

The work on the structure of the virus shells and identification of mutations to improve their stability was carried out by Professor David Stuart and his team at Oxford University using Diamond Light Source, the UK's national synchrotron facility.

Dr Bryan Charleston at Pirbright Institute and Professor Ian Jones at Reading University and their teams incorporated the mutations into the empty virus shells and showed they stimulate protective immunity in cattle.

Together the three groups have developed a system for the production of empty protein shells in commercially viable amounts.

Richard Seabrook, Head of Business Development at the Wellcome Trust, which part-funded the work, says: 'This vaccine still has some way to go before it will be available to farmers but these early results are very encouraging.'

Nigel Gibbens, the UK's Chief Veterinary Officer, comments: 'There are many more years of work and research to be done to get this vaccine ready for use, but this is undoubtedly an exciting leap forward. Once available, vaccines of this type would have clear advantages over current technology as a possible option to help control the disease should we ever have another foot and mouth disease outbreak.

'This vaccine has been developed using some truly groundbreaking techniques which are a credit to the quality of British scientists working in the field of animal health.'

The scientists involved believe this new approach to making and stabilising a vaccine may also work with other viruses from the same family, including viruses that infect humans such as polio.

'This work will have a broad and enduring impact on vaccine development, and the technology should be transferable to other viruses from the same family, such as poliovirus and hand foot and mouth disease, a human virus which is currently endemic in south-east Asia,' says Professor Stuart.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Seeking the Right Prescription in Fight Against Antibiotic Resistance
Researchers at the University of Oxford have received funding to look at ways to improve the prescribing of antibiotics.
Monday, November 23, 2015
£17M Project Launched to Develop HIV Vaccine
A new €23 million (£17 million) initiative to accelerate the search for an effective HIV vaccine has begun.
Wednesday, November 11, 2015
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Tuesday, November 10, 2015
Mini DNA Sequencer’s Data Belies its Size
A miniature DNA sequencing device that plugs into a laptop and was developed by Oxford Nanopore has been tested by an open, international consortium, including Oxford University researchers.
Tuesday, October 20, 2015
Microbe Artwork Shows The Limits Of Antibiotics
An Oxford University research fellow has been creating art using bacteria found in the human gut and harvested from faecal samples.
Tuesday, September 29, 2015
Funding Boost for Diabetes Research
Programme of research could be a game-changer for people with Type 1 diabetes and insulin-dependent Type 2 diabetes.
Friday, July 24, 2015
Ebola Vaccine Trial Begins in Senegal
A clinical trial to evaluate an Ebola vaccine has begun in Dakar, Senegal, after initial research started at the Jenner Institute, Oxford University.
Thursday, July 16, 2015
New Insight into Recombination and Sex Chromosomes
Not only does the platypus have some odd physical features, an updated version of its genome has also underscored the unusual genetic characteristics that it harbors.
Tuesday, May 12, 2015
Protein Clue To Sudden Cardiac Death
A protein has been shown to have a surprising role in regulating the 'glue' that holds heart cells together, a finding that may explain how a gene defect could cause sudden cardiac death.
Tuesday, February 17, 2015
Oxford Vaccine Group Begins First Trial of New Ebola Vaccine
Oxford University doctors and scientists are starting the first safety trial of an experimental preventative Ebola vaccine regimen being developed by the Janssen Pharmaceutical Companies of Johnson & Johnson (Janssen).
Wednesday, January 07, 2015
New Vaccine Generates Strong Immune Response Against Hepatitis C
A new hepatitis C vaccine has shown promising results in an early clinical trial at Oxford University, generating strong and broad immune responses against the virus causing the disease.
Friday, November 07, 2014
Investment In Cancer Research At Oxford University
Centre for Molecular Medicine to focus on cancer genomics and molecular diagnostics, through a partnership with the Chan Soon-Shiong Institute.
Friday, October 24, 2014
A-maize-ing Double Life of a Genome
Study findings could help current efforts to improve existing crop varieties.
Tuesday, July 15, 2014
Genetic Tracking Identifies Cancer Stem Cells in Patients
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer – cancer stem cells.
Friday, May 16, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos