Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Brewer Science Installs Scale-up Reactor

Published: Tuesday, April 02, 2013
Last Updated: Tuesday, April 02, 2013
Bookmark and Share
Supports expansion of electronics-grade carbon nanotube (CNT) Materials for CNT-based memory devices.

Brewer Science, a leader in lithography enhancement materials for semiconductor manufacturing for over 30 years and commercial supplier of electronics-grade carbon nanotube (CNT) materials, announces the installation of a scale-up reactor to increase production of its CNTRENE® C100 family of electronics-grade CNT materials by tenfold. Such materials are used in chemical and biological sensors and nanotube-based nonvolatile random access memory device applications, which require extremely low levels of metal ion contaminants with concentration limits in parts per billion.

“Small-scale reaction equipment can only take manufacturing so far with respect to quality and delivery time. This new scale-up reactor will provide the capability to complete weeks of reactions in three days while producing materials that meet stringent microelectronics specifications,” said Dr. Stephen Gibbons, Director of Technology of Brewer Science’s Carbon Electronics Center.

Jim Lamb, Director of Business Development for the Carbon Electronics Center stated ‘’With increasing customer usage and the move toward commercial adoption in devices, we needed to implement our third round of scale-up to support market demand. Growth of our CNTRENE® C100 family of products is driven by their use in nanotube-based nonvolatile random access memory devices, a universal CNT memory structure developed by Nantero, Inc., sold under the name NRAM, which could replace embedded memory, DRAM, SRAM, and flash memory devices. This structure allows flexible placement of memory in the device stack and can be stacked for vertically placed memory cells. NRAM devices provide other key benefits including robustness, 3-nanosecond write speeds, low operating power, radiation-hardened memory cells, and the ability to perform at high operating temperatures.”

Jim Lamb from Brewer Science will be presenting at the upcoming Applied Power Electronics Conference (APEC). He will speak about “Carbon Nanotubes Solutions for Packaging and Wireless Sensors” (presentation IS2.4.3) on Thursday, March 21, at the industry session on Nanotechnology Applications in Power Electronics.

This progress in CNT manufacturing is an example of how Brewer Science continues its long history of introducing unique and innovative materials technologies, bringing them to scaled manufacture with the performance and purity required for state-of-the-art integrated circuit manufacturing.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!