Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Startup Launched from Georgia Tech-Emory University Research Receives $7.9 Million

Published: Tuesday, April 02, 2013
Last Updated: Tuesday, April 02, 2013
Bookmark and Share
Clearside Biomedical, Inc. has received $7.9 million in funding to continue drug and technology development for treatment of ocular diseases.

The new funding is in addition to a $4 million venture capital investment received by Clearside Biomedical in early 2012 that served as the foundation for the startup company.

Santen Pharmaceuticals Co., Ltd in Osaka, Japan, will fund Clearside’s technology development, and has also entered into a research collaboration agreement for posterior ocular diseases. Santen, along with new investor Mountain Group Capital and its affiliates, joins current investors Hatteras Venture Partners in Durham, NC, the Georgia Research Alliance Venture Fund, and the University of North Carolina’s Kenan Flagler Business School Private Equity Fund.

Clearside Biomedical is developing microinjection technology that uses hollow microneedles to precisely deliver drugs to a targeted area at the back of the eye. If the technique proves successful in clinical trials and wins regulatory approval, it could provide an improved method for treating diseases including age-related macular degeneration and glaucoma, as well as other ocular conditions related to diabetes.

The technology was developed in a collaboration between the research groups of Henry Edelhauser, PhD, professor of ophthalmology at Emory University School of Medicine, and Mark Prausnitz, PhD, a Regents’ professor in Georgia Tech’s School of Chemical and Biomolecular Engineering. The National Institutes of Health sponsored research leading to development of the technology.

In contrast to standard treatments, this microneedle technology provides a more targeted approach for treating retinal diseases that confines the drug to the site of disease and reduces side effects from exposing other parts of the eye. Prior to the development of this technology, drugs could be delivered to the retinal tissues at the back of the eye in three ways: injection by hypodermic needle into the eye’s vitreous humor (the gelatinous material that fills the eyeball); eye drops, which have limited ability to reach the back of the eye; and pills taken by mouth that expose the whole body to the drug.

The technology developed by Georgia Tech and Emory uses a hollow micron-scale needle to inject drugs into the suprachoroidal space located between the outer surface of the eye – known as the sclera – and the choroid, a deeper layer that provides nutrients to the rest of the eye. Preclinical research has shown that fluid can flow between the two layers, where it can spread out along the circumference of the eye, targeting structures like the choroid and retina that are now difficult to reach.

By targeting the suprachoroidal space using microscopic needles, the researchers believe they can reduce trauma to the eye, make drugs more effective and reduce complications. The new delivery method could help advance a new series of drugs being developed to target the retina, choroid and other structures in the back of the eye.

“I cannot imagine a better alliance as we continue to understand the role the suprachoroidal space will play in dosing medicine directly to the site of retinal disease in patients experiencing retinal blindness,” says Daniel White, president and CEO of Clearside Biomedical. “The collaboration with Santen prepares an avenue to develop state-of-the-art medications for the critical treatment of sight-threatening diseases.”

In November 2012, Clearside announced its first successful human dosing with the device in a safety and tolerability study in patients with retinal disease.

The U.S. Food and Drug Administration has allowed Clearside Biomedical to pursue testing related to its Investigational New Drug (IND) Application for CLS1001 (triamcinolone acetonide) Suprachoroidal Injectable Suspension. This IND would treat sympathetic ophthalmia, temporal arteritis, uveitis and ocular inflammatory conditions unresponsive to topical corticosteroids. Clinical testing is scheduled to proceed within the next few months.

Samirkumar Patel and Vladimir Zarnitsyn, researchers from the Prausnitz lab who were involved in development of the ocular drug delivery technique, have joined Clearside Biomedical. Edelhauser serves as vice president of scientific affairs and Prausnitz serves on the board of directors of Clearside Biomedical.

The company was formed with the assistance of Georgia Tech’s VentureLab program, Georgia Tech’s center for commercialization, serving faculty, staff and students who want to form startup companies based upon their research or invention.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Microneedle Patch For Measles Vaccination Could Be A Global Game Changer
A new microneedle patch being developed by the Georgia Institute of Technology and the Centers for Disease Control and Prevention (CDC) could make it easier to vaccinate people against measles and other vaccine-preventable diseases.
Wednesday, April 29, 2015
Studies Reveal Diverse Molecular Mechanisms Underlying Evolution
Researchers have sequenced the genomes and transcriptomes of five species of African cichlid fishes and uncovered a variety of features that enabled the fishes to thrive in new habitats and ecological niches within the Great Lakes of East Africa.
Monday, September 08, 2014
New Evidence that Cancer Cells Change While Moving throughout Body
For the majority of cancer patients it is the spread or “metastasis” of cancer cells from the primary tumor to secondary locations throughout the body that is the problem.
Wednesday, September 04, 2013
Mechanical Forces Control Assembly and Disassembly of a Key Cell Protein
Researchers have for the first time demonstrated that mechanical forces can control the depolymerization of actin.
Tuesday, April 02, 2013
Genetic Packing: Successful Stem Cell Differentiation Requires DNA Compaction, Study Finds
New research findings show that embryonic stem cells unable to fully compact the DNA inside them cannot complete their primary task: differentiation into specific cell types that give rise to the various types of tissues and structures in the body.
Wednesday, May 16, 2012
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!