Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Winners of the Aminoff Prize in Crystallography Announced

Published: Wednesday, April 03, 2013
Last Updated: Wednesday, April 03, 2013
Bookmark and Share
Carlo Gatti and Mark Spackman developed experimental and theoretical methods to study electron density in crystals, and using them to determine molecular and crystalline properties.

The Royal Swedish Academy of Sciences gives award to Carlo Gatti, CNR-ISTM, Milan, Italy and Mark Spackman, University of Western Australia.

Both Carlo Gatti and Mark Spackman have independently developed concepts for interpreting electron density distributions related to quantum chemistry theory, using multipole analysis of high-quality X-ray diffraction data. This approach has, in particular, significantly demonstrated and quantified the role of hydrogen bonding in molecular systems. ‘Charge density topology’ is important for classification of the type and strength of chemical bonding in solid compounds and molecules.

Read more about the Laureates’ research below.

The Prize will be awarded at the Royal Swedish Academy of Sciences’ Annual Meeting on 5 April 2013.

Prize amount

SEK 100,000 to be shared equally between the Laureates.

The Laureates

Carlo Gatti, Italian citizen. Born in 1954. Ph.D. in Chemistry (1978) at University of Milan. Senior Research Scientist at Institute of Molecular Sciences and Technology, Italian National Research Council (CNR-ISTM), Italy.

Mark Spackman, Australian citizen. Born in 1954. Ph.D. in Theoretical Chemistry (1989) at University of Western Australia. Wintrop Professor and Head of school at the School of Chemistry and Biochemistry, University of Western Australia, Australia.

One key concept developed by Carlo Gatti is the Source Function (Bader & Gatti, 1998), which permits visualisation of chemical bonds and other fundamental chemical properties using only information from observed electron density and its derivatives. The function equates values of observed density at any point within the crystal to a sum of atomic contributions. Input electron densities can be obtained from experimental high resolution X-ray diffraction data, collected at low temperatures to avoid thermal diffuse scattering. In X-ray crystallography and materials sciences, the Source Function tool has been extensively applied to interpret a wide range of different bonding modes.

Mark Spackman devised and implemented a new scheme for partitioning crystal space into molecular and atomic volumes limited by Hirshfeld surfaces, which reflect the nature and strength of interatomic and intermolecular interactions in quantitative terms. An exploratory paper (Spackman & Byrom, 1997), focusing on electron distributions derived from X-ray diffraction data on urea, clearly demonstrated the significance of Hirshfeld surface analysis. Figure (a) below shows the relief and contour of the Hirshfeld weight function w(r) in the molecular plane; it indicates the flat nature of w(r) close to the atoms in the molecule, with a value close to 1.0, and the steep decline with increasing distance from the molecule. Figure (b) is a contour map of the molecule electron density, while figure (c) shows the close packing in the urea crystal, with molecules approaching their nearest neighbours but separated by the intermolecular void regions. The intermolecular voids are almost entirely devoid of electron density. Hirshfeld analysis has come into general use with the advent of CrystalExplorer, a software tool for crystal engineering that Spackman played an active role in developing.

The Gregori Aminoff Prize

The Aminoff Prize is intended to reward a documented, individual contribution in the field of crystallography, including areas concerned with the dynamics of the formation and determination of crystal structures. The Prize may be awarded either to an individual Swedish or foreign researcher or jointly to a research group with no more than three members. The Aminoff Prize was first awarded in 1979.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!