Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Shedding New Light on Wheat Adaptation and Domestication

Published: Wednesday, April 03, 2013
Last Updated: Wednesday, April 03, 2013
Bookmark and Share
The advanced online publication version of Nature today presents two manuscripts that provide an unprecedented glimpse into the adaptation and domestication of wheat.

Chinese Scientists Report the Latest Genomic Studies of Wheat, Shedding New Light on Crop Adaptation and Domestication -Two Separate Studies Published Online in the Same Issue of Nature

Publish Date:2013-03-25

March 25, 2013, Shenzhen, China – The advanced online publication version of Nature today presents two manuscripts that provide an unprecedented glimpse into the adaptation and domestication of wheat. These achievements are the results of joint efforts led by the Institute of Genetics and Developmental Biology (IGDB), Chinese Academy of Sciences, Chinese Academy of Agricultural Sciences (CAAS), and BGI. The two projects sequenced and analyzed two ancestral wheat genomes of Triticum urartu and Aegilops tauschii, respectively, throwing light on the biology of the world’s primary staple crop and providing valuable new resource for the genetic improvement of wheat.

Wheat is a globally important crop due to its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker’s flour. Major efforts are underway worldwide to increase its yield and quality by increasing genetic diversity and analyzing key traits related to its resistance to cold, drought and disease. However, the extremely large size and polyploid complexity of the wheat genome has to date been a substantial barrier for researchers to gain insight into its biology and evolution.

The first manuscript, led by teams at IGDB and BGI, presents the genome of Bread wheat (T. aestivum, AABBDD), the progenitor of the Wheat A genome. Using a whole-genome shotgun strategy and Next-generation sequencing (NGS), researchers identified a large set of gene models (34,879) and abundant genetic markers with the potential to provide a valuable resource for accelerating deeper and more systematic genomic and breeding studies. For example, they found the T. urartu homolog of OsGASR7 might be a useful candidate for improving wheat yield. The discovery of 2,989,540 SNPs (single nucleotide polymorphisms) is useful for the future development and characterization of genetic markers. The researchers also reported genomic evidence of the role of repeat expansion in the enlargement of genome size during the evolution of the Triticeae tribe of grasses.

Ae. tauschii (DD), also known as Tausch's goatgrass, is a diploid goat grass species which has contributed the D genome of common wheat. Around 8,000 years ago in the Fertile Crescent, it crossed with the tetraploid wheat T. turgidum (AABB) in rare hybridization events that resulted in the hexaploid wheat T. aestivum. However, the modern strategy of breeding for hybrid vigor has been accompanied by marked changes in patterns of gene expression.

The second manuscript, led by teams at CAAS and BGI, focuses on the genome sequencing and analysis of the wild diploid grass Ae. tauschii. They found that more than 65.9% of the Ae. tauschii genome was comprised of 410 different transposable element (TE) families, and the expansion of the Ae. tauschii genome was relatively recent and coincided with the abrupt climate change that occurred during the Pliocene Epoch. They also found the expansion of the micro-RNA miR2275 family may contribute to Ae. Tauschii’ s enhanced disease resistance. Remarkably, a higher number of genes for the cytochrome P450 family were identified in Ae. tauschii (485) than sorghum (365), rice (333), Brachypodium (262) and maize (261). This family of genes has been found to be important for abiotic stress response, especially in biosynthetic and detoxification pathways.

Shancen Zhao, Project Manager of BGI, said, “Genetic improvement of crops is the key output of breeding research. The genomic data provides a valuable resource for botanists and breeders to comprehensively understand wheat’s genetic diversity and evolutionary history. The two studies also represent a major step forward for improving this vital crop in the face of global climate change, growing human population, and bio-energy. ”

Providing the global agricultural community with these resources new resources for crop improvement and in keeping with the scientific community’s goals of making all data fully and freely available, the huge amounts of data (1.5 terabytes) are available in the GigaScience database, GigaDB, in a citable format (see: http://dx.doi.org/10.5524/100050 and http://dx.doi.org/10.5524/100054), and are available as raw reads in the NCBI SRA database (Accession # SRP005973 and SRP005974).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!