Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Will Cell Therapy Become a 'Third Pillar' of Medicine?

Published: Thursday, April 04, 2013
Last Updated: Thursday, April 04, 2013
Bookmark and Share
Treating patients with cells may one day become as common as it is now to treat the sick with drugs made from engineered proteins, antibodies or smaller chemicals.

“Today, biomedical science sits on the cusp of a revolution: the use of human and microbial cells as therapeutic entities,” said Wendell Lim, PhD, a UCSF professor and director of the UCSF Center for Systems and Synthetic Biology, and one of the co-authors of an article published online April 3 in Science Translational Medicine.

Cell therapies have the potential to address critical, unmet needs in the treatment of some of the deadliest diseases, including diabetes, cancer and inflammatory bowel diseases, the scientists said.

The reason, they said, is that cells can carry out functions that can’t be performed by small-molecule drugs produced by Big Pharma, or by targeted drugs developed by biotech firms in the wake of the genetic engineering revolution. For one, cells are adaptable. They can sense their surroundings better than today’s drugs and can vary their responses to better suit physiologic conditions.

Continued advances in cellular engineering could provide a framework, according to the co-authors, for the development of cellular therapies that are safe and that act predictably.

Joining Lim as co-authors of the Science Translational Medicine article are Michael Fischbach, PhD, assistant professor in the UCSF School of Pharmacy and an expert on the human microbiome, and Jeffrey Bluestone, PhD, executive vice chancellor and provost at UCSF and a leading diabetes and transplant rejection researcher.

The three also have organized a daylong symposium on the potential of cell therapy on April 12 supported by UCSF and the journal Science Translational Medicine, featuring talks and discussion by some of the nation’s leading scientists in stem cell therapy, immunotherapy and the human microbiome – the latter consisting primarily of the many hundreds of interacting species of bacteria that live within and upon us.

Advances in Cell Therapies

It has been more than four decades since cells were first used successfully in bone marrow and organ transplants, but the strategies envisioned today are more complex, involving manipulating cells based on new knowledge of how genes program their development and inner workings.

Cells of the immune system are among those that naturally carry out critical functions, but researchers are working on manipulating them to create better-targeted and more effective therapies. For instance, immune responses directed against cancer often are weak, so scientists are engineering and growing populations of immune cells that target specific molecules found on cancer cells. Already, remarkable recoveries from deadly leukemia have been credited to these new experimental treatments.

Bacterial cells also are showing promise for therapy. In recent years, scientists have come to appreciate that 90 percent of the cells living within and on our bodies are bacteria and that these microbes interact with our own cells and affect our health.

The potential of bacteria to treat disease has been demonstrated dramatically by the recent use of fecal transplants to introduce communities of health-promoting bacteria into patients with recurrent Clostridium difficile infections, a serious gastrointestinal condition that can be life-threatening. Combinations of bacteria that also are engineered to fight inflammation might prove to be even more effective in treating Crohn’s disease and other inflammatory bowel diseases, according to the UCSF scientists.

Other “killer apps” for cell therapies might include combinations of bacterial and human engineered cells. For instance, to control weight gain, gut bacteria might be deployed to convert certain carbohydrates into non-digestible forms, and also to signal engineered human cells lining the epithelial walls to trigger a program that sends a message to the brain that appetite has been satisfied.

Still, many engineering and regulatory challenges to cell therapy remain, the authors concede.

Scientists want to be able to reliably control many aspects of cells, including their activation, population growth, programmed death, migration to specific sites in the body, interactions and communications with other cells, production of small therapeutic molecules, and decision making.

While the complexity of cells makes many scientists leery of cell therapies, the authors said, this complexity might make cell therapies more predictable than other drugs, because complicated, naturally occurring feedback circuits tend to restrict cellular activity. Just as cells already use molecular circuits to act very precisely, researchers ought to be able develop a systematic understanding of the cell’s control modules to tune and reshape how cells behave.

“If small molecules and biologics are tools, then cells are carpenters — and architects and engineers as well,” Fischbach said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Some 3-D Printed Objects Are Toxic
Researchers at the University of California, Riverside have found parts produced by some commercial 3-D printers are toxic to certain fish embryos.
Monday, November 09, 2015
Scientific News
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Battery Component Found to Harm Key Soil Microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research.
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!