Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Stem Cells Enable Personalized Treatment for Bleeding Disorder

Published: Monday, April 08, 2013
Last Updated: Monday, April 08, 2013
Bookmark and Share
Scientists use endothelial cells to treat von Willebrand disease.

Scientists have shed light on a common bleeding disorder by growing and analyzing stem cells from patients' blood to discover the cause of the disease in individual patients.

The technique may enable doctors to prescribe more effective treatments according to the defects identified in patients' cells.

In future, this approach could go much further: these same cells could be grown, manipulated, and applied as treatments for diseases of the heart, blood and circulation, including heart attacks and haemophilia.

The study focused on von Willebrand disease (vWD), which is estimated to affect 1 in 100 people and can cause excessive, sometimes life-threatening bleeding.

vWD is caused by a deficiency of von Willebrand factor (vWF), a blood component involved in making blood clot.

vWF is produced by endothelial cells, which line the inside of every blood vessel in our body. Unfortunately, they are difficult to study because taking biopsies from patients is invasive and unpleasant.

A group led by Dr Anna Randi at the National Heart and Lung Institute, Imperial College London used a new approach to investigate the disease.

Dr Richard Starke, a British Heart Foundation Intermediate Fellow and lead author of the study, took routine blood samples from eight patients with vWD, extracted stem cells called endothelial progenitor cells, and grew them in the lab to yield large numbers of endothelial cells.

By testing these cells, they were able to analyze each patient's disease in unprecedented detail. In some patients, the scientists found new types of defect, which may enable them to recommend improved treatments.

Professor Mike Laffan, a collaborator in the study and in charge of patients with VWD at Hammersmith Hospital in West London, is looking to apply these findings to reduce severe bleeding in these patients.

Dr Randi believes that endothelial progenitor cells could become an invaluable resource for testing new drugs for vWD and other diseases. "We will be able to test the effects of a range of compounds in the patients' own cells, before giving the drugs to the patients themselves," she said.

This approach could have impact far beyond vWD. Endothelial cells derived from blood could also be isolated and reinjected into someone recovering from a heart attack, to help them grow new blood vessels and repair the injured heart tissue.

Dr Starke says this approach avoids the main problem with transplant therapies, in which the immune system tries to destroy the foreign material. "The patients would receive their own cells, so they wouldn't face the problems of rejection," he said.

Work is well underway towards achieving this goal, but blood-derived endothelial cells are only now being explored. "There are already many studies where patients have been injected with stem cells to see whether damage to the heart could be repaired, and there are some promising results," says Dr Randi. "The door is open to such treatments, and our studies are a step towards identifying the right cells to use."

The group's previous research has already thrown up pointers for potential new treatments. Aside from producing vWF to form clots, endothelial cells are responsible for forming new blood vessels.

In their last paper, the group showed that vWF is actually needed to build healthy blood vessels. Some patients with vWD suffer severe bleeding from the gut because defects in vWF cause their blood vessels to develop abnormally.

"There are drugs already being used in other diseases which target abnormal blood vessel, that could be useful to stop bleeding in some vWD patients," says Randi. "Nobody would have thought of using them to treat vWD, but by testing them on the patient's own endothelial cells , in the laboratory, we can find out if these drugs work before giving them to the patient."

Scientists are now interested in the possibility of using endothelial cells as a treatment in themselves. For instance, haemophilia, the hereditary bleeding disorder which affected Queen Victoria's family, might one day be treated by taking these cells from a patient and replacing the gene that causes the disease, then putting them back into the patient.

Funding for the study came from the British Heart Foundation, the Medical Research Council and the National Institute for Health Research Imperial Biomedical Research Centre.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
Friday, October 21, 2016
Leukaemia Cell Movement Gives Clues to Tackling Treatment-Resistant Disease
Researchers at Imperial College London have suggested that the act of moving itself may help the cells to survive, possibly through short-lived interactions with an array of our own cells.
Tuesday, October 18, 2016
Preventing Alzheimer's in Mice
Researchers have prevented the Alzheimer’s development in mice by using a virus delivery system to transport a specific gene into the brain.
Tuesday, October 11, 2016
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Wednesday, September 28, 2016
Feeding Babies Egg and Peanut May Prevent Food Allergy
The new analysis pools all existing data, and suggests introducing egg and peanut at an early age may prevent the development of allergy.
Wednesday, September 21, 2016
Dengue Vaccine May Increase Risk of Severe Disease
The world's only licensed vaccine for dengue may worsen subsequent dengue infections if used in areas with low rates of dengue infection.
Friday, September 02, 2016
Breast Milk Sugar Protect Newborns Against Meningitis
Research suggests breat milk sugar can protect against Group B streptococcus, a leading cause of meningitis.
Thursday, September 01, 2016
Breast Milk Sugar May Protect Babies Against Deadly Infection
Researchers from Imperial College London find that a sugar found in some women’s breast milk may protect babies against Group B streptococcus.
Friday, August 26, 2016
MRSA – Just Add Salt
Scientists have discoved a new way to attack Staphylococcus aureus through salt content mechanisms
Friday, August 19, 2016
Flu Vaccine May Reduce Death Risk of Type 2 Diabetes
New research suggests that a new flu vaccine may reduce probability of type 2 diabetes patients being hospitalised with stroke and heart failure.
Tuesday, July 26, 2016
Zika Epidemic Likely to End Within Three Years
A team of scientists has predicted that the current Zika epidemic is likely to end within three years because there will be too few people left to infect.
Friday, July 15, 2016
Sound Waves May Hold Potential to Treat Twin Pregnancy Complications
Researchers at Imperial College London have found that the high energy sound waves could treat a potentially deadly complication that affects some twin pregnancies.
Friday, July 15, 2016
Viral hepatitis kills as Many as Malaria, TB or HIV/AIDS
Viral hepatitis is one of the leading killers across the globe, with a death toll that matches AIDS or tuberculosis.
Thursday, July 07, 2016
Supplement May Switch off Cravings for High-Calorie Foods
Researchers have found that inulin-propionate ester supplement curbs cravings for junk food.
Saturday, July 02, 2016
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Friday, June 24, 2016
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos