" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellular Gatekeepers Do More than Open Doors for Drugs, UCSF Study Finds

Published: Monday, April 08, 2013
Last Updated: Monday, April 08, 2013
Bookmark and Share
Discovery could change the way we design medications and shed light on side effects.

The cellular gatekeepers that escort the most common pharmaceuticals into our cells continue to work within the cells as well, according to a UC San Francisco discovery that could transform drug design and lead to new ways to treat disease.

Almost half of approved pharmaceuticals — for cancer, heart failure, inflammatory diseases, and others — act through gatekeepers on cell surfaces known as G-protein-coupled receptors (GPCRs). More than 1,000 specific GPCR proteins play roles in nerve signaling, immune responses, sensory perception and many other physiological phenomena governed by the trillions of cells within our bodies.

A team led by UCSF cell biologist Mark von Zastrow, MD, PhD, now has demonstrated that these receptor proteins can remain active longer than expected — even after being pulled into the cell after the attachment of a drug or natural activator. The researchers also demonstrated the value of a new way to study the receptors once they’re inside the cell, one which may shed light on why therapeutics have unexpected effects or varying degrees of effectiveness, according to von Zastrow. The study appeared in the March 28 issue of Nature.

“From the standpoint of drug development, this may open a vast new range of targets, involving the cellular machinery that determines whether or not these key receptor molecules are present on the cell surface,” said von Zastrow, a cell biologist who holds the Friends of LPPI Endowed Chair for Research in Schizophrenia and Depression at UCSF.

Using small, genetically engineered “nanobodies” — tiny antibodies similar to those naturally present in camels, but in few other animals — the researchers were able to trace short-lived chemical liaisons between molecules and to demonstrate that a GPCR known as the beta-adrenergic receptor remains active for minutes after it is internalized within the cell. The same receptor often has served as a model for studies of GPCRs, including studies by Brian K. Kobilka, MD, of Stanford University and Robert J. Lefkowitz, MD, of Duke University, who shared the 2012 Nobel Prize in Chemistry for discoveries related to GPCRs.

Many drugs mimic the shapes of natural signaling molecules and block or activate specific GPCRs. When activated, the receptor acts upon another protein — its own specific partner within a class of enzymes known as G proteins. In a chain reaction, G proteins then initiate their own effects downstream in the cell’s biochemical pathways.

The small size and flexibility of the engineered nanobodies allow them to attach to parts of proteins that other antibodies can’t reach. Von Zastrow’s team developed one fluorescent nanobody to bind selectively to the transitional, activated form of the beta adrenergic receptor, and another to bind to the activated form of its G protein. This enabled the researchers to trace the receptors’ activity as they moved inside the cell from the cell surface.

Noting that different drugs can have different effects, even when targeting the same receptor, von Zastrow suggests that nanobodies might help drug developers gain insight into whether these differences are caused by attachments to different transient shapes formed by GPCRs. The engineered nanobodies could serve as tools to tag key activated forms of GPCRs as the receptors interact with other molecules. Nanobodies might even be adaptable for high-throughput drug screening, von Zastrow suggested.

Tracking GPCRs in the Cell

UCSF postdoctoral fellow Roshanak Irannejad, PhD, who performed most of the key experiments and was first author on the paper, used isoproterenol — a drug for treating slow heart beat — to activate the beta-adrenergic receptor and trace activity over time and space, on and within the cells of a human kidney cell line.

Von Zastrow is an expert on endosomes, small membranous sacs pinched off from cell membranes and taken into cells. Each cell may contain 1,000 or more endosomes. Different endosomes contain different molecules. GPCRs were thought to be inactive within endosomes, where they awaited one of two fates — being sent to the cell’s trash heap, or being recycled to the cell surface. Once activated, GPCRs are taken into the cell via endosomes.

“It was previously thought that once the receptor is taken away from the cell’s surface that it no longer does anything until it is recycled back to the surface later,” he said. “Our data clearly show that’s not true — the internalized receptors actually are active and doing specific things within cells.”

Von Zastrow speculates that endosomes might sometimes help redeploy GPCRs to different parts of the cell surface where they are needed, a function that might prove especially valuable to oddly shaped cells such as neurons, which have long, branching processes — axons and dendrites — and large surface areas. Drugs might one day be targeted to manipulate the internalization and movement of specific GPCRs via endosomes, von Zastrow said.

Other UCSF authors of the Nature report include assistant professors Bo Huang, PhD, and Hana El-Samad, PhD; and postdoctoral fellows Jin Tomshine PhD, Jonathan Tomshine PhD, and Michael Chevalier PhD. Collaborators from the University of Michigan, the University of Copenhagen and Vrije Universiteit Brussel, in Belgium, participated in the study.

The research was funded by the National Institutes of Health and the American Heart Association.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
Scientific News
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Protein Protects Against Flu in Mice
The engineered molecule doesn’t provoke inflammation and may hail a new class of antivirals.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!