Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

New System to Improve DNA Sequencing

Published: Tuesday, April 09, 2013
Last Updated: Tuesday, April 09, 2013
Bookmark and Share
A sensing system developed at Cambridge is being commercialised in the UK for use in rapid, low-cost DNA sequencing.

System would make the prediction and diagnosis of disease more efficient and individualised treatment more affordable.

Dr Ulrich Keyser of the University’s Cavendish Laboratory, along with PhD student Nick Bell and other colleagues, has developed a system which combines a solid-state nanopore with a technique known as DNA origami, for use in DNA sequencing, protein sensing and other applications. The technology has been licensed for development and commercialisation to UK-based company Oxford Nanopore, which is developing portable, low-cost DNA analysis sequencing devices.

Nanopore technology has the potential to revolutionise DNA sequencing and the analysis of a range of other biological molecules, providing dramatic improvements in power, cost and speed over current methods.

A nanopore is an extremely small hole - between one and 100 nanometres in diameter – typically contained in a membrane between two chambers containing a salt solution and the molecule of interest. When the molecules pass through the nanopores, they disrupt an ionic current through the nanopore and this difference in electrical signals allows researchers to determine certain properties of those molecules.

Over the past decade, researchers have been investigating various methods of constructing nanopores in order to improve accuracy and reliability. A key part of this is the ability to finely control the shape and surface chemistry of the nanopores, which would maximise sensitivity and facilitate the identification of a wider range of molecules.

Currently, there are two main types of nanopores in use: solid state nanopores constructed by fabricating tiny holes in silicon or graphene with electron beam equipment; and biological nanopores made by inserting pore-forming proteins into a biological membrane such as a lipid bilayer.

Biological nanopores are cheap and easy to manufacture in large quantities of identical pores.  It is possible through genetic engineering to define their structure at the atomic level, varying the pores for the analysis of different target molecules. However, they are only suitable for a limited range of applications, and may be replaced over time by solid-state nanopores. At present, solid-state nanopores are difficult to manufacture and are not as sensitive as biological nanopores, as it is difficult to position specific chemical groups on the surface.

In collaboration with researchers at Ludwig Maximilian University in Munich, Dr Keyser and his team have developed a hybrid nanopore which combines a solid-state material, such as silicon or graphene, and DNA origami - small, well-controlled shapes made of DNA.

“The DNA origami structures can be formed into any shape, allowing highly accurate control of the size and shape of the pore, so that only molecules of a certain shape can pass through,” says Dr Keyser. “This level of control allows for far more detailed analysis of the molecule, which is particularly important for applications such as phenotyping or gene sequencing.”

Since complementary sequences of DNA can bind to one another, the origami structures can be customised so that functional groups, fluorescent compounds and other molecular adapters can be added to the DNA strands with sub-nanometre precision, improving sensitivity and reliability. Additionally, hundreds of billions of self-assembling origami structures can be produced at the same time, with yields of up to 90 per cent.

Recent research by the team, published in the journal Lab on a Chip, has shown that up to 16 measurements can be taken simultaneously, allowing for much higher data throughput and screening of different DNA origami structures.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Greater Understanding Of Polycystic Ovary Syndrome
A new genetic study of over 200,000 women reveals the underlying mechanisms of polycystic ovary syndrome, as well as potential interventions.
Wednesday, September 30, 2015
Maintaining Healthy DNA Delays Menopause
An international study of nearly 70,000 women has identified more than forty regions of the human genome that are involved in governing at what age a woman goes through menopause.
Tuesday, September 29, 2015
New Consortium to Develop and Study Early Stage Drugs
An innovative new Consortium will act as a ‘match-making’ service between pharmaceutical companies and researchers in Cambridge with the aim of developing and studying precision medicines for some of the most globally devastating diseases.
Thursday, July 30, 2015
MRSA Contamination Found in Supermarket Pork
A survey carried out earlier this year has found the first evidence of the ‘superbug’ bacteria Methicillin-Resistant Staphylococcus Aureus (MRSA) in sausages and minced pork obtained from supermarkets in the UK.
Monday, June 22, 2015
Expression of Certain Genes Changes with the Seasons
As the seasons change, so do the expression levels of many human genes, including ones involved in immune function, according to new research.
Thursday, May 14, 2015
Blood Markers Could Help Predict Outcome Of Infant Heart Surgery
New research suggests it may be possible to predict an infant’s progress following surgery for congenital heart disease by analysing a number of important small molecules in the blood.
Friday, May 08, 2015
Poisons, Plants and Palaeolithic Hunters
Dr Valentina Borgia to develop a technique for detecting residues of deadly substances on archaeological objects.
Saturday, April 11, 2015
‘Mini-Lungs’ Grown To Aid The Study Of Cystic Fibrosis
'Mini-lungs’ have been created using stem cells derived from skin cells of patients with cystic fibrosis.
Thursday, March 19, 2015
Gene Discovery Provides Clues To How TB May Evade The Immune System
The largest genetic study of TB susceptibility to date has led to a potentially important new insight into how the pathogen manages to evade the immune system.
Tuesday, March 17, 2015
Human Genome Includes 'Foreign' Genes Not From Our Ancestors
Many animals, including humans, acquired essential ‘foreign’ genes from microorganisms co-habiting their environment in ancient times, according to research published in the open access journal Genome Biology.
Monday, March 16, 2015
Order Matters: Sequence Of Genetic Mutations Determines How Cancer Behaves
The order in which genetic mutations are acquired determines how an individual cancer behaves, according to research from the University of Cambridge, published today in the New England Journal of Medicine.
Thursday, February 12, 2015
Artificially-intelligent Robot Scientist ‘Eve’ Could Boost Search for New Drugs
Eve, an artificially-intelligent ‘robot scientist’ could make drug discovery faster and much cheaper, say researchers writing in the Royal Society journal Interface.
Wednesday, February 04, 2015
Using Genome Sequencing to Track MRSA in Under-resourced Hospitals
Whole genome sequencing of MRSA from a hospital in Asia has demonstrated patterns of transmission in a resource-limited setting, where formal screening procedures are not feasible.
Thursday, December 11, 2014
Amazing Feet Of Science: Researchers Sequence The Centipede Genome
What it lacks in genes, it certainly makes up for in legs: the genome of the humble centipede has been found to have around 15,000 genes – around 7,000 fewer than a human.
Wednesday, November 26, 2014
Molecular Event Mapping Opens Door to more in silico Tests
It is hoped that this new approach to mapping and predicting the impact of chemical compounds in the body could reduce the need for toxicity tests in animals.
Wednesday, November 19, 2014
Scientific News
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Horse Illness Shares Signs of Human Disease
Horses with a rare nerve condition have similar signs of disease as people with conditions such as Alzheimer’s, a study has found.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos