" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Technique Directs Immune Cells to Target Leukemia

Published: Wednesday, April 10, 2013
Last Updated: Wednesday, April 10, 2013
Bookmark and Share
Targeted immunotherapy technique directs the patient’s own immune system to attack cancer cells.

A type of targeted immunotherapy induced remission in adults with an aggressive form of leukemia that had relapsed in 5 patients. The early results of this ongoing trial highlight the potential of the approach.

Acute lymphoblastic leukemia (ALL) is cancer in which the bone marrow makes too many lymphocytes, a type of white blood cell. In patients with B-cell ALL, the marrow produces too many B lymphocytes, which make antibodies to help fight infection.

When adult patients with B-cell ALL have remission followed by relapse, the prognosis is poor. Standard treatment uses chemotherapy to kill cancer cells, followed by a transplant of bone marrow stem cells to replace blood-forming cells destroyed by the chemotherapy.

Targeted immunotherapy has proven effective against less aggressive B-cell tumors. This technique directs the patient’s own immune system to attack cancer cells.

The researchers first remove immune cells known as T cells from the patient. These cells are genetically modified to produce an artificial receptor that can latch onto B cells and trigger their destruction. The modified T cells are then infused back into the patient.

As the technique showed success in targeting other types of B-cell tumors, a team led by Drs. Michel Sadelain and Renier J. Brentjens at the Memorial Sloan-Kettering Cancer Center set out to test it in people with relapsed B-cell ALL.

The receptor they added to the patients’ T cells was a chimeric antigen receptor (CAR) designed to target a protein called CD19 found on the surface of B cells.

Their phase I clinical trial was funded in part by NIH's National Cancer Institute (NCI). Results appeared on March 20, 2013, in Science Translational Medicine.

The researchers found that all 5 of the patients who received the therapy were in complete remission within weeks of the CAR-modified T-cell infusion.

Three patients were able to receive bone marrow transplants 1 to 4 months after the cell transfer therapy and were still in remission up to 2 years later.

One patient was unable to receive a stem cell transplant after the targeted therapy and relapsed. Another died while in remission of complications likely unrelated to the therapy.

Overall, the therapy itself was well tolerated. Three of the patients developed fevers and 2 needed high-dose steroid therapy to treat inflammation triggered by the treatment.

“Patients with relapsed B-cell ALL resistant to chemotherapy have a particularly poor prognosis,” Brentjens says. “The ability of our approach to achieve complete remissions in all of these very sick patients is what makes these findings so remarkable and this novel therapy so promising.”

The researchers are now testing the CAR-modified T cells in several more patients. Further clinical trials have also been planned to test whether B-cell ALL patients would benefit from receiving this therapy earlier in the course of disease-either along with initial chemotherapy or during remission to help prevent relapse.

“We need to examine the effectiveness of this targeted immunotherapy in additional patients before it could potentially become a standard treatment for patients with relapsed B-cell ALL,” Brentjens says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
Researchers Investigate How a Developing Brain is Assembled
NIH 3-D software tracks worm embryo's brain development.
Tuesday, December 08, 2015
Scientific News
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Protein Protects Against Flu in Mice
The engineered molecule doesn’t provoke inflammation and may hail a new class of antivirals.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!