Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH-funded Researchers Create Next-Generation Alzheimer’s Disease Model

Published: Thursday, April 11, 2013
Last Updated: Thursday, April 11, 2013
Bookmark and Share
New rat model will advance Alzheimer’s research.

A new genetically engineered lab rat that has the full array of brain changes associated with Alzheimer’s disease supports the idea that increases in a molecule called beta-amyloid in the brain causes the disease, according to a study, published in the Journal of Neuroscience.

The study was supported by the National Institutes of Health.

“We believe the rats will be an excellent, stringent pre-clinical model for testing experimental Alzheimer’s disease therapeutics,” said Terrence Town, Ph.D., the study’s senior author and a professor in the Department of Physiology & Biophysics in the Zilkha Neurogenetic Institute at the University of Southern California Keck School of Medicine, Los Angeles.
 
Alzheimer’s is an age-related brain disorder that gradually destroys a person’s memory, thinking, and the ability to carry out even the simplest tasks. Affecting at least 5.1 million Americans, the disease is the most common form of dementia in the United States.

Pathological hallmarks of Alzheimer’s brains include abnormal levels of beta-amyloid protein that form amyloid plaques; tau proteins that clump together inside neurons and form neurofibrillary tangles; and neuron loss.

Additionally, glial cells - which normally support, protect, or nourish nerve cells - are overactivated in Alzheimer’s.

Plaque-forming beta-amyloid molecules are derived from a larger protein called amyloid precursor protein (APP). One hypothesis states that increases in beta-amyloid initiate brain degeneration.

Genetic studies on familial forms of Alzheimer’s support the hypothesis by linking the disease to mutations in APP, and to presenilin 1, a protein thought to be involved in the production beta-amyloid.

Researchers often use rodents to study diseases. However, previous studies on transgenic mice and rats that have the APP and presenilin 1 mutations only partially reproduce the problems caused by Alzheimer’s.

The animals have memory problems and many plaques but none of the other hallmarks, especially neurofibrillary tangles and neuron loss.

To address this issue, Dr. Town and his colleagues decided to work with a certain strain of rats.

“We focused on Fischer 344 rats because their brains develop many of the age-related features seen in humans,” said Dr. Town, who conducted the study while working as a professor of Biomedical Sciences at Cedars-Sinai Medical Center and David Geffen School of Medicine at the University of California, Los Angeles.

The rats were engineered to have the mutant APP and presenilin 1 genes, which are known to play a role in the rare, early-onset form of Alzheimer’s.

Behavioral studies showed that the rats developed memory and learning problems with age.

As predicted, the presence of beta-amyloid in the brains of the rats increased with age. However, unlike previous rodent studies, the rats also developed neurofibrillary tangles.

“This new rat model more closely represents the brain changes that take place in humans with Alzheimer’s, including tau pathology and extensive neuronal cell death,” said Roderick Corriveau, Ph.D., a program director at NIH’s National Institute of Neurological Disorders and Stroke.

Corriveau continued, “The model will help advance our understanding of the various disease pathways involved in Alzheimer’s onset and progression and assist us in testing promising interventions.”

The researchers performed a variety of experiments confirming the presence of neurofibrillary tangles in brain regions most affected by Alzheimer’s such as the hippocampus and the cingulate cortex, which are involved in learning and memory.

Further experiments showed that about 30 percent of neurons in these regions died with age, the largest amount of cell death seen in an Alzheimer’s rodent model, and that some glial cells acquired shapes reminiscent of the activated glia found in patients.

“Our results suggest that beta-amyloid can drive Alzheimer’s in a clear and progressive way,” said Dr. Town.

Activation of glia occurred earlier than amyloid plaque formation, which suggests Dr. Town and his colleagues identified an early degenerative event and new treatment target that scientists studying other rodent models may have missed.

The findings support a prime research objective identified during the May 2012, NIH-supported Alzheimer’s Disease Research Summit 2012: Path to Treatment and Prevention, an international gathering of Alzheimer’s researchers and advocates. Improved animal models were cited as key to advancing understanding of this complex disease.

"To fully benefit from this exciting new work, there is a critical need to share the animal model with researchers dedicated to finding ways to delay, prevent or treat Alzheimer's disease’’ said Neil Buckholtz, Ph.D., of the National Institute on Aging, which leads the NIH effort in Alzheimer’s research.

Buckholtz continued, “Accordingly, Dr. Town and his colleagues are working towards making their new rat model easily accessible to the research community.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
Friday, September 30, 2016
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
Thursday, September 29, 2016
Probe Identifies Schizophrenia Genes That Stunt Brain Development
Scientists have isolated schizophrenia-related gene variants that change gene expression in the brain.
Thursday, September 29, 2016
Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Wednesday, September 28, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Friday, September 23, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
NIH Study Finds Link Between Depression, Gestational Diabetes
Researchers at NIH have discovered that the depression in early pregnancy doubles risk for gestational diabetes, and gestational diabetes increases risk for postpartum depression.
Tuesday, September 20, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Finding Compounds That Inhibit Zika
Researchers identified compounds that inhibit the Zika virus and reduce its ability to kill brain cells.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Friday, September 02, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!