Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Rigid Growth Matrix: A Key to Success of Cardiac Tissue Engineering

Published: Monday, April 15, 2013
Last Updated: Monday, April 15, 2013
Bookmark and Share
UCLA team found that rigid matrices promotes the generation of more cardiomyocytes cells from ES cells.

Adult heart muscle is the least regenerative of human tissues. But embryonic cardiomyocytes (cardiac muscle cells) can multiply, with embryonic stem cells providing an endless reservoir for new cardiac tissue.

A new study by Nakano, Gimzewski and their co-workers at the University of California, Los Angeles (UCLA) suggests that the elasticity of the physical matrix used for growing cardiomyocytes outside of the body may be critical to the success of cardiac tissue engineering efforts.

Published in the journal Science and Technology of Advanced Materials Vol. 14, p. 025003 (, the study found that a stiff or rigid environment not only enhances the function of existing cardiomyocytes (as has previously been shown), but also promotes the generation of cardiomyocytes from embryonic stem (ES) cells.

It may therefore be possible to grow new heart muscle tissue from stem cells by manipulating the stiffness of the medium they're grown in.

In living organisms, a type of adult stem cells called mesenchymal stem cells (MSCs) are extremely sensitive to the elasticity of different materials, when cultured outside the body.

For example, soft growing matrices that mimic brain tissue promote the differentiation of MSCs into neurons, while rigid matrices that resemble bone tissue promote the differentiation of MSCs into bone cells.

In this study, the UCLA team examined the role of matrix elasticity on cardiac muscle development using mouse and human embryonic stem cells, which were grown on different substrates of a silicon-based organic polymer that varied in stiffness.

In addition, ES-derived cardiomyocytes displayed functional maturity and synchronization of beating when cultured with cardiomyocytes harvested from a developing embryo.

The team recommends further research on how biophysical cues determine the fate of embryonic stem cells in order to improve cardiac tissue culture methods for regenerative medicine purposes.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nanoparticle Delivery Maximizes Drug Defense Against Bioterrorism Agent
UCLA team develops method for improving drug’s efficacy while reducing side effects.
Saturday, November 07, 2015
Study Finds Link Between Neural Stem Cell Overgrowth and Autism-like Behavior in Mice
UCLA researchers demonstrates how, in pregnant mice, inflammation can trigger an excessive division of neural stem cells.
Tuesday, October 14, 2014
UCLA Awarded $7 Million to Unravel Mystery Genetic Diseases
UCLA tackle difficult-to-solve medical cases and develop ways to diagnose rare genetic disorders.
Friday, July 04, 2014
Scientists Identify Link Between Stem Cell Regulation and the Development of Lung Cancer
Study explains how factors that regulate the growth of adult stem cells lead to the formation of precancerous lesions.
Tuesday, June 24, 2014
Stem Cell Gene Therapy for Sickle Cell Disease Advances Toward Clinical Trials
Gene therapy technique is scheduled to begin clinical trials by early 2014.
Tuesday, July 02, 2013
Cells Derived from Pluripotent Stem Cells may Pose Challenges for Clinical Use
UCLA researchers have found that three types of cells derived from hES cells and from iPS cells are similar to each other.
Tuesday, August 23, 2011
UCLA Scientists Find Molecular Switch to Prevent Huntington's Disease in Mice
Finding suggests new approach for treating devastating disorder.
Tuesday, December 29, 2009
UCLA Scientists Develop 'Crystal Ball' for Personalized Cancer Treatment
New tool predicts how a chemotherapy drug will work on individual tumors to pinpoint the effective treatment.
Friday, February 06, 2009
Scientists Reprogram Induced Pluripotent Cells into Precursors of Eggs, Sperm
The findings from UCLA researchers can possibly open the door for new treatments for infertility using patient-specific cells.
Wednesday, February 04, 2009
Scientists at UCLA Reprogram Human Skin Cells into Embryonic Stem Cells
UCLA stem cell scientists have reprogrammed human skin cells into cells with the same unlimited properties as embryonic stem cells, without using embryos or eggs.
Tuesday, February 12, 2008
Using Nanotechnology, UCLA Researchers Discover that Cancer Cells "Feel" Much Softer than Normal Cells
UCLA scientists have differentiated metastatic cancer cells from normal cells in patient samples using nanotechnology that measures the softness of the cells.
Tuesday, December 04, 2007
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos