Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Discovery Points to New Approach to Fight Dengue Virus

Published: Monday, April 15, 2013
Last Updated: Monday, April 15, 2013
Bookmark and Share
Researchers have discovered that rising temperature induces key changes in the dengue virus when it enters its human host, suggests new approach for designing vaccines against the aggressive mosquito-borne pathogen.

The researchers found that the dengue virus particles swell slightly and take on a bumpy appearance when heated to human body temperature, exposing "epitopes," or regions where antibodies could attach to neutralize the virus.

The discovery is significant because it could help to explain why vaccines against dengue have been ineffective, said Michael G. Rossmann, Hanley Distinguished Professor of Biological Sciences at Purdue University.

Scientists have been designing vaccines targeting the virus's smooth appearance found at the cooler temperatures of mosquitoes and ticks.

"The bumpy form of the virus would be the form present in humans, so the optimal dengue virus vaccines should induce antibodies that preferentially recognize epitopes exposed in that form," Rossmann said.

The findings are detailed in a research paper appearing online this week in Proceedings of the National Academy of Sciences.

The researchers used a technique called cryo-electron microscopy to see the three-dimensional structure of the virus at temperatures ranging from 28-37 degrees Celsius (37 degrees Celsius is 98.6 degrees Fahrenheit, or human body temperature). Findings showed that the virus has a smooth appearance while at the cooler temperatures found in mosquito or tick vectors, but then it morphs into the bumpy form at warmer temperatures before fusing to the host cell and delivering its genetic material.

"These findings were a big surprise," said Richard J. Kuhn, professor and head of Purdue's Department of Biological Sciences and director of the Bindley Bioscience Center. "No one expected to see the virus change its appearance as it moves from the mosquito to humans."

The paper was co-authored by postdoctoral researcher Xinzheng Zhang; lab manager Ju Sheng; postdoctoral researcher Pavel Plevka; Kuhn; Michael S. Diamond, a researcher at Washington University School of Medicine; and Rossmann.

Findings also could apply to related infections in the flavivirus family, which includes a number of dangerous insect-borne diseases such as West Nile, yellow fever, tick-borne encephalitis and Japanese encephalitis.

Dengue (pronounced DEN-gē) is a leading cause of serious illness and death among children in some Asian and Latin American countries, causing 50 million to 100 million infections per year. Globally, dengue has grown dramatically in recent decades, placing about half the world's population at risk of infection.

The researchers determined that the bumpy form of the virus is more efficient at infecting mammalian cells. The team was able to measure the virus's infectivity using a laboratory procedure where cells are infected in a culture dish. The bumpy shape is an intermediate stage before the virus becomes unstable, releasing its genetic material. The virus is made of subunit molecules that separate when the virus particle expands into its bumpy form, revealing exposed membrane surfaces between the subunits where antibodies might bind.

The work is funded by the National Institutes of Health and Purdue through university support for a structural biology electron microscope facility.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Electronic Sensor Tells Dead Bacteria From Live
The sensor, which measures 'osmoregulation', is a potential future tool for medicine and food safety.
Wednesday, June 15, 2016
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Wednesday, June 15, 2016
New Treatment for Pancreatic Cancer
Researchers at Purdue University have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis.
Tuesday, May 17, 2016
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
Friday, April 22, 2016
Environmental Cleanup Tech Rids Oil from Water
A new technology that is easy to manufacture and uses commercially available materials makes it possible to continuously remove oils and other pollutants from water, representing a potential tool for environmental cleanup.
Tuesday, April 05, 2016
Zika Virus Structure Revealed
Team at Purdue becomes the first to determine the structure of the Zika virus, which reveals insights critical to the development of effective antiviral treatments and vaccines.
Monday, April 04, 2016
Identifying Foodborne Pathogens
A Purdue University innovation that creates a "fingerprint-like pattern" to identify foodborne pathogens without using reagents has been licensed by Hettich Lab Technology.
Wednesday, March 02, 2016
'Lipidomics' Could Bring Fast Cancer Diagnosis
Researchers have developed a new analytical tool for medical applications and biological research that might be used to diagnose cancer more rapidly than conventional methods.
Wednesday, February 24, 2016
Remote-Controlled Drug Delivery
A team of researchers has created a new implantable drug-delivery system using nanowires that can be wirelessly controlled.
Thursday, June 25, 2015
Microsecond Raman Imaging Might Probe Cells, Organs for Disease
An advanced medical diagnostic tool for the early detection of cancer and other diseases.
Thursday, April 02, 2015
Purdue-Based Firms Grow After Receiving Emerging Innovations Fund Investments
The Fund has helped to support new business ventures across a range of research areas.
Friday, March 13, 2015
Keck Foundation to Fund Purdue Research into Spectroscopic Imaging
Ji-Xin Cheng leads a Purdue team awarded a $1 million W.M. Keck Foundation grant to develop a new type of imaging technology for cell and tissue analysis that could bring advanced medical diagnostics.
Tuesday, February 10, 2015
Pharmaceuticals, Personal Care Products Could Taint Swimming Pools
A new study suggests pharmaceuticals and chemicals from personal care products end up in swimming pools, possibly interacting with chlorine to produce disinfection byproducts with unknown properties and health effects.
Monday, January 12, 2015
Purdue Research Suggests Approach to Treat Virus Causing Respiratory Illness
Enterovirus D68 has stricken children with serious respiratory infections.
Monday, January 05, 2015
Drinking Water Odors, Chemicals Above Health Standards Caused by 'Green Building' Plumbing
Several types of plastic pipes in eco-friendly green buildings in the United States have been found to leach chemicals into drinking water that can cause odors and sometimes exist at levels that may exceed health standards.
Tuesday, October 21, 2014
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
A New Way Out for Stem Cells
Researchers at North Carolina State University have discovered that therapeutic stem cells exit the bloodstream in a different manner than was previously thought.
One Giant Leap for the Future of Safe Drug Delivery
Sheffield engineers make major breakthrough in developing silk ‘micro-rockets’ that can be used safely in biological environments.
Designing Potential AIDS Vaccine Candidates
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Anticancer Drug Stops Ebola Virus Molecule in its Tracks
A team of scientists from the University of Oxford have successfully mapped the structure of the Ebola virus molecule that drives the attack strategy and leads to fatal infections in humans.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!