Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Blocking a Key Protein Gives Boost to Immune System

Published: Monday, April 15, 2013
Last Updated: Monday, April 15, 2013
Bookmark and Share
UCLA scientists have shown that temporarily blocking a protein critical to immune response actually helps the body clear itself of chronic infection.

Published in the April 12 edition of the journal Science, the finding suggests new approaches to treating persistent viral infections like HIV and hepatitis C.

The research team studied type-1 interferons (IFN-1), proteins released by cells in response to disease-causing organisms. These proteins enable cells to talk to each other and orchestrate an immune response against infection. Constant IFN-1 signaling is also a trademark of chronic viral infection and disease progression, particularly in HIV.

"When cells confront viruses, they produce type-1 interferons, which trigger the immune system's protective defenses and set off an alarm to notify surrounding cells," said principal investigator David Brooks, an assistant professor of microbiology, immunology and molecular genetics at UCLA's David Geffen School of Medicine and the UCLA College of Letters and Science. "Type-1 interferon is like the guy in the watchtower yelling 'red alert' when the marauders try to raid the castle."

Scientists have long viewed IFN-1 as beneficial, because it stimulates antiviral immunity and helps control acute infection. Blocking IFN-1 activity, they reasoned, would allow infection to run rampant through the immune system.

On the other hand, prolonged IFN-1 signaling is linked to many chronic immune problems. The research team wondered whether obstructing the signaling pathway would enable the immune system to recover enough to fight off chronic infection.

To test this theory, Brooks and his colleagues injected mice suffering from chronic viral infection with an antibody that temporarily blocked IFN-1 activity.

Much to their surprise, they discovered that giving the immune system a holiday from IFN-1 boosted the body's ability to fight the virus. Stunningly, the respite also reversed many of the immune problems that result from chronic infection, such as a rise in proteins that suppress immune response, continuous activation of the immune system and disruption of lymph tissue.

The findings fly in the face of past studies that suggest eliminating IFN-1 activity in mice leads to severe, lifelong infection.

"What we saw was entirely illogical," Brooks admitted. "We'd blocked something critical for infection control and expected the immune system to lose the fight against infection. Instead, the temporary break in IFN-1 signaling improved the immune system's ability to control infection. Our next step will be to figure out why and how to harness it for therapies to treat humans."

"We suspect that halting IFN-1 activity is like pushing the refresh button," said first author Elizabeth Wilson, a UCLA postdoctoral researcher. "It gives the immune system time to reprogram itself and control the infection."

Uncovering this mechanism could offer potential for new therapies to tackle viruses like HIV and hepatitis C, according to Brooks. The team's next step will be to pinpoint how to sustain IFN-1's control of the virus while blocking the negative impact that chronic IFN-1 activity wreaks on the immune system.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
A New Way Out for Stem Cells
Researchers at North Carolina State University have discovered that therapeutic stem cells exit the bloodstream in a different manner than was previously thought.
One Giant Leap for the Future of Safe Drug Delivery
Sheffield engineers make major breakthrough in developing silk ‘micro-rockets’ that can be used safely in biological environments.
Designing Potential AIDS Vaccine Candidates
Findings represent ‘big accomplishment’ in biomedical engineering and design.
Anticancer Drug Stops Ebola Virus Molecule in its Tracks
A team of scientists from the University of Oxford have successfully mapped the structure of the Ebola virus molecule that drives the attack strategy and leads to fatal infections in humans.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
Anthrax Proteins Might Help Treat Cancerous Tumors
Studies in mice reveal novel treatment regimen.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!