Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists ID New Kidney Cancer Subtypes

Published: Thursday, April 18, 2013
Last Updated: Thursday, April 18, 2013
Bookmark and Share
Breakthrough will help physicians tailor treatment to individual kidney cancer patients, moving cancer care one step closer to personalized medicine.

Their findings are the result of 10 years of UCLA research on kidney cancers at the genetic and molecular levels, with scientists conducting chromosomal analyses in an effort to identify what mutations may be causing and affecting the behavior of the malignancies. Thousands of tumors removed at UCLA have been studied, said Dr. Allan Pantuck, a professor of urology and director of genitourinary oncology at UCLA's Jonsson Comprehensive Cancer Center.

Traditionally, pathologists study tumors under the microscope and attempt to predict their behavior by the way they look. However, tumors that appear the same often behave differently, and oncologists need to know which are lower risk, which are more aggressive and which are more likely to spread, making the cancer much more difficult to treat.

"Pathologists can give us some important information, but similar-appearing tumors often can and do behave differently," said Pantuck, the senior author of the study. "Our findings have us heading further in the direction of personalized medicine based on the molecular signature of an individual's tumor. We still have a lot to learn, but we're now a step closer."

The study appears April 16 in the early online edition of Cancer, a peer-reviewed journal of the American Cancer Society.

The study findings were made in a type of kidney cancer called clear cell renal carcinoma. The researchers identified two new subtypes of this cancer: one in which there is the deletion of the short arm of chromosome 3 (known as 3p) and one in which both the short arm of chromosome 3 and the long arm of chromosome 14 (known as 14q) are deleted.

This is significant because the short arm 3p harbors a tumor-suppressor gene. In the case of 14q, its deletion results in the additional loss of a hypoxia-inducible factor 1 (HIF1) alpha gene, which lessens the effects of hypoxia, the state of low oxygen concentration, on the cell; tumors need oxygen so they can grow and spread.

The researchers found that the loss of 3p was associated with improved survival, meaning patients with this subtype of cancer might not need to be treated as aggressively as those with tumors that still have 3p. In elderly patients with this subtype, tumors could perhaps be monitored aggressively for evidence of progression in lieu of immediate treatment, the researchers said. The study authors are not yet sure why the loss of the the tumor-suppressor gene associated with 3p does not correlate with worse outcomes.

Patients with tumors in which both 3p and 14q were deleted had much worse outcomes.

"The results of this study support the hypothesis that the HIF1 alpha gene functions as another important tumor-suppressor gene," Pantuck said. "With this finding, we can now decide to treat these patients with more aggressive therapies."

Going forward, Pantuck and his team will work to identify more subtypes of kidney cancer. The findings of this study come from a single center, so they will also need to be reproduced by other scientists in other locations, he said.

This year alone, kidney cancer will strike more than 65,000 Americans, killing more than 13,000. Finding new and more effective therapies is vital to reducing the number of deaths.

Dr. Arie Belldegrun, director of UCLA's Institute of Urologic Oncology, characterized the finding as significant.

"Kidney cancer is not a single disease, and it can now be further subdivided based on a clearly defined molecular profile. These researchers have identified unique molecular patterns in patients with various stages of the disease," he said. "These findings have important implications to the surgical and medical treatment of kidney cancer. It is one important step to individualize kidney cancer therapy and move away from the 'one size fits all' approach."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Researchers Reverse Bacterial Resistance to Antibiotics
Evidence continues to surface that supports the premise that antibiotics which have been out of use could still be effective in treating drug-resistant bacteria.
Friday, May 08, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!