Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Study Uncovers Details of Early Stages in Muscle Formation and Regeneration

Published: Tuesday, April 23, 2013
Last Updated: Monday, April 22, 2013
Bookmark and Share
Mouse study findings may offer clues for understanding cell fusion.

Researchers at the National Institutes of Health have identified proteins that allow muscle cells in mice to form from the fusion of the early stage cells that give rise to the muscle cells.

The findings have implications for understanding how to repair and rehabilitate muscle tissue and to understanding other processes involving cell fusion, such as when a sperm fertilizes an egg, when viruses infect cells, or when specialized cells called osteoclasts dissolve and assimilate bone tissue in order to repair and maintain bones.

Their findings were published online in the Journal of Cell Biology.

"Through a process that starts with these progenitor cells, the body forms tissue that accounts for about one-third of its total weight," said the study's senior author, Leonid V. Chernomordik, Ph.D., of the Section on Membrane Biology at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the NIH institute where the research was conducted. "Our study provides the first look at the very early stages of this fusion process."

Dr. Chernomordik conducted the study along with researchers at NICHD (Evgenia. Leikina, D.V.M.,; Kamram. Melikov, Ph.D.; Samristha Sanyal, Ph.D.; Santosh Verma, Bokke Eun, Ph.D.; Claudia Gebert, D.V.M., Ph.D.; Karl Pfeifer, Ph.D., and Vladimir.A. Lizunov, Ph.D.) and at Tel Aviv University, in Israel (Michael M. Kozlov, Ph.D.).

Muscle cells originate from precursor cells known as myoblasts. Myoblasts fuse to form a single long tubular cell called a myocyte (a muscle fiber). Muscle tissue is composed of large collections of these fibers.

The fusion of myoblasts into muscle fibers takes place early in fetal development. With exercise and throughout a person's life, the process is repeated to form new muscle mass and repair old or damaged muscle.

It takes many hours for cells to prepare for fusion, but the fusion process itself is very rapid. To study myoblast fusion, the researchers first blocked the start of the fusion process with a chemical.

Ordinarily, the mouse myoblasts the researchers worked with fuse at varied intervals. By blocking fusion, and then lifting the block, the researchers were able to synchronize fusion in a large number of cells, making the process easier to study.

The researchers identified the two distinct stages of cell fusion and the essential proteins that facilitate these stages.

In the first stage, two myoblasts meet, and proteins on cell surface membranes cause the membranes to meld.

In the second stage, a pore opens between the cells and their contents merge. This second step is guided by proteins inside the cells.

The work identifies two cell surface proteins that act at the start of myoblast fusion. These proteins belong to a large family of proteins called annexins. Annexins are also known to play a role in membrane repair and in inflammation.

The researchers identified the protein dynamin, found inside the cell, as essential to the second stage of the cell fusion process.

"Dynamin also has an unexplained link to certain rare and poorly understood myopathies - disorders characterized by underdeveloped muscles," said Dr. Chernomordik.

Dr. Chernomordik continued, "We hope that further examination of the role of dynamin in cell fusion will lead to a greater understanding of these conditions."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!