Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Schmidt Fund Awards to Advance Innovations in Drug Therapy and Search for Planets

Published: Friday, April 26, 2013
Last Updated: Friday, April 26, 2013
Bookmark and Share
Two Princeton University research projects have been selected to receive grants from Princeton's Eric and Wendy Schmidt Transformative Technology Fund.

The fund supports concepts with potential for broad impact in the natural sciences and engineering. It was created in 2009 through a $25 million endowment by Google executive chairman Eric Schmidt, a 1976 alumnus and former trustee, and his wife, Wendy, to encourage the development of new technologies that could transform entire fields of science.

The winning projects are a technology for attaching drug molecules to radioactive labels that enable detection of the drugs using brain imaging, led by Princeton chemistry professor John Groves; and a method for improving the image-correcting systems on telescopes to better detect far away objects including planets outside our solar system, led by Tyler Groff, Princeton postdoctoral researcher in mechanical and aerospace engineering.

"These are two truly innovative technologies that have tremendous potential to lead to breakthroughs in their areas of study and beyond," said A.J. Stewart Smith, dean for research, the Class of 1909 Professor of Physics, and chair of the committee that selected the winners. "The Schmidt fund has enabled Princeton University to make investments in ideas that have the potential to radically boost scientific and technical advancement."

New tools to visualize drug therapy in the brain

John Groves and his team will receive $600,000 from the fund to develop a system for labeling drugs with radioactive markers that make them visible using a brain-imaging method known as positron emission tomography (PET) scanning.

The rapid creation of these radiolabeled drugs could enable medical researchers to explore whether the experimental medicines are reaching their targets, and could aid in the development of drugs to treat disorders such as Alzheimer's disease and stroke, according to Groves, Princeton's Hugh Stott Taylor Chair of Chemistry.

The method for creating the radiolabeled drugs is based on a recent discovery in Groves' lab of a new process, published in Science last fall, for incorporating fluorine atoms into drug molecules. The process uses a synthetic liver enzyme to replace hydrogen with radioactive fluorine in the drug molecule. This new method avoids the toxic and corrosive agents in use for such processes today.

With the Schmidt funding, Groves and his team will develop an automated method to quickly attach radiolabeled fluorine to drug molecules. The major hurdle, Groves said, is finding a way to accelerate the chemical reaction between the fluorine and the drug so that the attachment can be completed before the compound degrades, which it does in about two hours. The group has already made substantial progress, Groves said.

"The Schmidt funding will enable us to explore ways to optimize the chemical reaction," Groves said, "as well as to create a prototype of an automated system that can carry out the reaction without the need for a human operator. This will allow us to create a rapid and noninvasive way to evaluate drug candidates and observe important metabolites within the human brain."

Aiding the search for planets

Inspired by the search for planets outside our solar system, Princeton postdoctoral researcher Tyler Groff conceived of a technology that could enhance the quality of images from telescopes. Groff will receive $300,000 in Schmidt funding to develop a new device for controlling the mirrors that telescopes use to correct blurring and distortion caused by atmospheric turbulence, heat and vibrations.

This technology, known as adaptive optics, involves measuring disturbances in the light coming into the telescope and making small deformations to the surface of a mirror in precise ways to correct the image.

These deformations are made using an array of mechanical devices, known as actuators, each of which can move a small area of the flexible reflective surface up and down. But existing actuators have limitations, such as requiring continuous power and being limited in the amount of correction they can provide. Additionally, the spaces between the actuators create dimples in the mirror, producing a visible pattern in the resulting images that astronomers call "quilting."

Groff envisioned replacing the array of rigidly attached actuators with flexible ones that can smoothly change shape as needed. Instead of actuators, attached to the back of the mirror is a packet containing iron particles suspended in a liquid, which is known as a ferrofluid. Just as iron filings can be moved by waving a magnet over them, applying varying magnetic fields to the ferrofluid creates changes in the shape of the fluid that in turn deforms the mirror.

The ferrofluid mirror enables high image quality while being more resistant to vibrations and potentially more power efficient, which will be important for future satellite-based telescopes, said Groff, who works in the laboratory of Jeremy Kasdin, professor of mechanical and aerospace

engineering. Ferrofluid mirrors do not have the size limits of the high actuator-density mirrors in use today, so they have the potential to be more easily integrated into the telescope. A ferrofluid mirror can also achieve something that a rigid actuator mirror cannot: it can assume a concave or bowl-like shape that aids the focusing of the telescope on objects in space.

"A telescope that uses ferrofluid mirrors would be able to see dim objects better, greatly enhancing our ability to probe other solar systems," Groff said. "The Eric and Wendy Schmidt Transformative Technology Fund will enable the studies needed to develop this technology, which has the potential to greatly expand our ability to find new planets in the universe."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Solving Streptide from Structure to Biosynthesis
Researchers reveal new information about how bacteria communicate via the protein, streptide.
Monday, May 18, 2015
Measles Virus Said to Suppress Immune System for up to Three Years
New research suggests measles can suppress children’s immune systems for up to three years following infection, leaving them susceptible to a host of other deadly diseases.
Monday, May 11, 2015
A Gene That Shaped The Evolution Of Darwin's Finches
Researchers from Princeton University and Uppsala University in Sweden have identified a gene in the Galápagos finches studied by English naturalist Charles Darwin that influences beak shape and that played a role in the birds' evolution from a common ancestor more than 1 million years ago.
Thursday, February 12, 2015
A Single Cell Smashes and Rebuilds Its Own Genome
Life can be so intricate and novel that even a single cell can pack a few surprises, according to a study led by Princeton University researchers.
Tuesday, September 09, 2014
Wild Sheep Show Benefits of Putting Up With Parasites
Researchers used 25 years of data on a population of wild sheep living on an island in northwest Scotland to assess the evolutionary importance of infection tolerance.
Monday, August 18, 2014
Collaboration Leads to Possible Shortcut to New Drugs
The reaction, reported in Science, demonstrates how a carboxylic acid can be transformed into a very reactive site through use of a novel photoredox catalyst.
Thursday, June 26, 2014
Even if Emissions Stop, Carbon Dioxide Could Warm Earth for Centuries
Study suggests that it might take a lot less carbon than previously thought to reach the global temperature scientists deem unsafe.
Monday, November 25, 2013
Small Bits of Genetic Material Fight Cancer's Spread
A class of molecules called microRNAs may offer cancer patients two ways to combat their disease.
Monday, October 21, 2013
Physicists, Biologists Unite to Expose How Cancer Spreads
New study has found that cancer cells that can break out of a tumor are more aggressive and nimble than nonmalignant cells.
Thursday, May 02, 2013
Study Casts Light on Deadly Immune Response
Volunteers’ extreme immune response helps create model for immune signals.
Tuesday, March 19, 2013
Parasite Metabolism can Foretell Disease Ranges under Climate Change
Knowing the temperatures that viruses, bacteria, worms and all other parasites need to grow and survive could help determine the future range of infectious diseases under climate change.
Thursday, February 28, 2013
Synthetic Fuels Could Eliminate Entire U.S. Need for Crude Oil, Create 'New Economy'
The United States could eliminate the need for crude oil by using a combination of coal, natural gas and non-food crops to make synthetic fuel, a team of Princeton researchers has found.
Wednesday, November 28, 2012
Far from Random, Evolution Follows a Predictable Genetic Pattern, Princeton Researchers Find
Evolution, often perceived as a series of random changes, might in fact be driven by a simple and repeated genetic solution to an environmental pressure, that a broad range of species happen to share.
Friday, October 26, 2012
Synthetic Liver Enzyme Could Result in More Effective Drugs with Fewer Side Effects
Medicines could be made to have fewer side effects and work in smaller doses with the help of a new technique that makes drug molecules more resistant to breakdown by the human liver.
Tuesday, October 16, 2012
Nanotechnology Breakthrough could Dramatically Improve Medical Tests
A laboratory test used to detect disease and perform biological research could be made more than 3 million times more sensitive, say researchers who combined standard biological tools with a breakthrough in nanotechnology.
Tuesday, June 26, 2012
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
How Cholesterol Leads to Clogged Arteries
A new study shows that when immune cells called neutrophils are exposed to cholesterol crystals, they release large extracellular web-like structures that trigger the production of inflammatory molecules linked to artherosclerosis.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!