Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Discovery Could Revolutionize Immunization

Published: Monday, April 29, 2013
Last Updated: Monday, April 29, 2013
Bookmark and Share
Immune cells in newborns appear to be more ready to do battle than previously thought.

New Cornell research shows that small populations of preprogrammed immune cells can fight specific pathogens that they have never encountered. The findings, say the researchers, have the potential to revolutionize how and when people are immunized.

The study, published in the March issue of the Journal of Immunology, demonstrates a way to grow these cells, potentially transforming our approach to preventing infectious disease.

When first exposed to a new pathogen, the immune system takes up to a week to effectively respond, and up to a month to make specialized memory cells that remember how to fight it. The next time a body is exposed, these memory cells take care of it within hours. Scientists had thought memory cells only developed after exposure, but Avery August, professor of microbiology and immunology, and his lab had discovered small pre-existing (innate) populations in 2008. Their defensive potential was unknown until the latest study found they act exactly like memory cells that learn from exposure.

“These fully functioning innate memory cells open amazing opportunities for improving how we immunize,” said August, chair of the Department of Microbiology and Immunology at Cornell’s College of Veterinary Medicine, who oversaw the study. “We’ve found a way to make millions of working memory cells without ever having to expose the body to a pathogen. If we can mobilize these cells to our advantage we can immunize much more quickly and eliminate the rare side effects of traditional vaccines.”

August

Vaccines work by stimulating immune cells to “remember” a pathogen. For example, by exposing the body to a particular strain, a vaccine helps the immune system learn to respond to it. Making memory cells directly could eliminate that learning curve, letting people bypass booster shots and some slower-acting vaccines, August said. People going abroad could get immunizations the day before they travel instead of weeks in advance.

Our bodies normally have about 100 memory cells at birth, according to August’s past research, but need about 100,000 to defend against the average invader. Using bone marrow chimeras, a specialized transplantation technique, the researchers were able to make 10 million. The study focused on memory cells designed to attack Listeria monocytogenes, bacteria that cause food poisoning, but August believes the model could be expanded to boost defenses against other infectious diseases.

“Theoretically we could generate memory cells for any kind of pathogen,” said August. “It looks like our immune systems are already trying to do this. The existence of these premade memory cells suggests that, over evolutionary history, our immune systems are trying to anticipate the pathogens we’ll face. Now we’ve found a way that could quickly help them along to improve immunities.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cancer Cells 'Talk' to their Environment, and it Talks Back
Scientists from Cornell University have developed a novel microscopy technique to measure the force breast cancer cells exert on their surroundings.
Wednesday, November 23, 2016
Wicked Weeds May Be Agricultural Angels
Agricutural scientists suggest less control over nature, as weeds can be beneficial to agriculture.
Wednesday, November 16, 2016
Bad Mitochondrial DNA May Increase Risk of Autism in Kids
Researchers have confired a genetic link between mtDNA and certain forms of autism spectrum disorder.
Tuesday, November 01, 2016
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Friday, September 30, 2016
$1M NIH Grant to Refine PCR Based Cancer Test
Researchers at Cornell University, Weill Cornell Medicine, the University of California, San Francisco, and the Infectious Diseases Institute in Kampala, Uganda, recieve a four-year, $1 million grant to hone technology for a quick, in-the-field diagnosis of Kaposi's sarcoma — a cancer frequently related to HIV infections.
Friday, September 02, 2016
Vortex Ring Freezing Applications
Accidental lab discovery could aid cell delivery and cell-free protein production.
Monday, August 22, 2016
Measuring Chemistry on a Chip
Researchers developing chemical sensor chip for sample analysis in a lab or monitoring air and water quality in the field.
Thursday, August 18, 2016
Key to Chronic Fatigue Syndrome is in Your Gut, Not Head
Researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
Wednesday, June 29, 2016
Pathogen Takes Control of Gypsy Moth Populations
A new fungal pathogen is killing gypsy moth caterpillars and crowding out communities of pathogens and parasites that previously destroyed these moth pests.
Tuesday, April 26, 2016
Eating Green Could be in Your Genes
Genetic variation uncovered that has evolved in populations that have historically favored vegetarian diets, such as in India, Africa and parts of East Asia.
Friday, April 01, 2016
$4.8M USAID Grant to Improve Food Security
To strengthen capacity to develop and disseminate genetically engineered eggplant in Bangladesh and the Philippines, the USAID has awarded Cornell a $4.8 million, three-year cooperative grant.
Friday, April 01, 2016
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Friday, January 15, 2016
Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
Metabolite Promotes Cancer Cell Transformation
Researchers have identified a metabolite that promotes cancer cell transformation and colorectal cancer spread.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Zika’s Entry Points
Discovery shows Zika infection of neural progenitor cells occurs regardless of AXL production, which was thought to be the main vector for the virus.
New Form of Autism Found
An international team of researchers have identified a new form of syndromic autism.
Radiation-Free Imaging in the Brain
Scientists create sensors that use proteins to detect particular targets through induced blood flow changes.
Failings in Conveying Risks of Undercooked Meat
A study has found that restaurants do not communicate the risks of eating undercooked meats.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!