Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

CNR Investigates Biodegradable and Biocompatible Polymer Research

Published: Thursday, May 02, 2013
Last Updated: Thursday, May 02, 2013
Bookmark and Share
Linkam Scientific Instruments report on the use of their THMS600 stage for polymer research at the Institute of Chemistry and Technology of Polymers (CNR), Italy.

A group of scientists from the CNR is investigating the melting kinetics of poly(3-hydroxybutyrate) (PHB), a natural thermoplastic polymer with mechanical properties comparable to synthetic polymers. PHB is now the focus of scientific interest as it has commercial potential as a fully biodegradable and biocompatible product. Potential uses include environmentally friendly packaging and films, pharmaceutical drug administration, and biocompatible resorbable medical implants. Small batches of PHB have been produced since 1925 by bacterial fermentation, but until now there is no large scale commercial production because it is more expensive than commonly used polymers. Further limitations are its narrow processability window, its brittleness and its very low resistance to thermal degradation. Since the melting temperature of PHB is around 170-180°C, the processing temperature should be at least 180-190°C, but at these temperatures thermal degradation of PHB proceeds very quickly.

The Linkam THMS600 stage fitted to a Zeiss polarized light microscope was used to study PHB. Initially samples were heated above the melting point, at 185°C, 190°C, 192°C, or 195°C, in order to erase previous thermal and mechanical history followed by cooling at 5°C/min after 3 minutes at the high temperature. It was observed that a high number of spherulites develop when the polymer is melted at 185°C for 3 minutes but contrasted to very low spherulite development at >192-193°C. It was concluded that melting below 192°C does not result in complete melting of the crystals, and so the nucleation density is very high in the subsequent crystallization step. It is theorized that the partially unmelted polymer retains a large memory of previous crystal order, and so the residual chain portions act as nucleation centers and result in a high nucleation density and a small spherulite size.

The team has found that some of the effects reported in literature as caused by degradation are actually related to non-completely melted structures. They found the chain degradation attained upon exposure at high temperatures has much lesser influence on crystallization kinetics than incomplete melting, with some effects detectable on the spherulitic morphology and on the final degree of crystallinity. The research is ongoing as the scientists continue to analyze quantitatively the process of erasing the crystal memory in PHB and attempt to estimate the activation energy.

Dott.ssa Maria Laura Di Lorenzo, one of the scientists working on the PHB research, added "the best feature of our Linkam stage is the fast heating/cooling rates, not accessible with other stages that we have in our laboratory."

The Linkam THMS600 stage is one of the most widely used microscope stages on the market and is used in many applications where high heating/freezing rates and 0.1°C accuracy are needed. With a wide temperature range of -196°C to 600°C samples can be quickly characterized by heating to within a few degrees of the required temperature at a rate of up to 150°C/. The entire experiment can be saved as an online plot or exported to a spreadsheet application. Visit Linkam at www.linkam.co.uk and learn about the broad range of applications in the field of temperature-controlled microscopy.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Battery Component Found to Harm Key Soil Microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research.
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!