Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

'Super-resolution' Microscope Possible for Nanostructures

Published: Thursday, May 02, 2013
Last Updated: Thursday, May 02, 2013
Bookmark and Share
STAM - New imaging system uses a trio of laser beams.

Researchers have found a way to see synthetic nanostructures and molecules using a new type of super-resolution optical microscopy that does not require fluorescent dyes, representing a practical tool for biomedical and nanotechnology research.

"Super-resolution optical microscopy has opened a new window into the nanoscopic world," said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.

Conventional optical microscopes can resolve objects no smaller than about 300 nanometers, or billionths of a meter, a restriction known as the "diffraction limit," which is defined as half the width of the wavelength of light being used to view the specimen.

However, researchers want to view molecules such as proteins and lipids, as well as synthetic nanostructures like nanotubes, which are a few nanometers in diameter.

Such a capability could bring advances in a diverse range of disciplines, from medicine to nanoelectronics, Cheng said.

"The diffraction limit represents the fundamental limit of optical imaging resolution," Cheng said. "Stefan Hell at the Max Planck Institute and others have developed super-resolution imaging methods that require fluorescent labels. Here, we demonstrate a new scheme for breaking the diffraction limit in optical imaging of non-fluorescent species. Because it is label-free, the signal is directly from the object so that we can learn more about the nanostructure."

Findings are detailed in a research paper that appeared online Sunday (April 28) in the journal Nature Photonics.

The imaging system, called saturated transient absorption microscopy, or STAM, uses a trio of laser beams, including a doughnut-shaped laser beam that selectively illuminates some molecules but not others.

Electrons in the atoms of illuminated molecules are kicked temporarily into a higher energy level and are said to be excited, while the others remain in their "ground state."

Images are generated using a laser called a probe to compare the contrast between the excited and ground-state molecules.

The researchers demonstrated the technique, taking images of graphite "nanoplatelets" about 100 nanometers wide.

"It's a proof of concept and has great potential for the study of nanomaterials, both natural and synthetic," Cheng said.

The doughnut-shaped laser excitation technique, invented by researcher Stefan Hell, makes it possible to focus on yet smaller objects.

Researchers hope to improve the imaging system to see objects about 10 nanometers in diameter, or about 30 times smaller than possible using conventional optical microscopes.

"We are not there yet, but a few schemes can be applied to further increase the resolution of our system," Cheng said.

Future research may include work to use lasers with shorter wavelengths of light. Because the wavelengths are shorter, the doughnut hole is smaller, possibly allowing researchers to focus on smaller objects.

The work will be discussed during the third annual Spectroscopic Imaging: A New Window into the Unseen World workshop on May 23 and 24 at Purdue. The workshop is hosted by the university's Weldon School of Biomedical Engineering.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Array Can Pinpoint Cancer Biomarker
A novel detection method for the detection of glycoproteins has been developed.
Monday, November 21, 2016
3D Imaging in Forensics
New portable, user-friendly crime-scene forensics tech will take high-resolution 3-D images of shoeprints, tire tracks in snow and soil.
Monday, November 14, 2016
NIH Research Project to Upgrade 'Metagenomics' System
Purdue University working toward upgraded metagenomics data system for use in personalized medicine.
Wednesday, October 26, 2016
Electronic Sensor Tells Dead Bacteria From Live
The sensor, which measures 'osmoregulation', is a potential future tool for medicine and food safety.
Wednesday, June 15, 2016
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Wednesday, June 15, 2016
New Treatment for Pancreatic Cancer
Researchers at Purdue University have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis.
Tuesday, May 17, 2016
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
Friday, April 22, 2016
Environmental Cleanup Tech Rids Oil from Water
A new technology that is easy to manufacture and uses commercially available materials makes it possible to continuously remove oils and other pollutants from water, representing a potential tool for environmental cleanup.
Tuesday, April 05, 2016
Zika Virus Structure Revealed
Team at Purdue becomes the first to determine the structure of the Zika virus, which reveals insights critical to the development of effective antiviral treatments and vaccines.
Monday, April 04, 2016
Identifying Foodborne Pathogens
A Purdue University innovation that creates a "fingerprint-like pattern" to identify foodborne pathogens without using reagents has been licensed by Hettich Lab Technology.
Wednesday, March 02, 2016
'Lipidomics' Could Bring Fast Cancer Diagnosis
Researchers have developed a new analytical tool for medical applications and biological research that might be used to diagnose cancer more rapidly than conventional methods.
Wednesday, February 24, 2016
Remote-Controlled Drug Delivery
A team of researchers has created a new implantable drug-delivery system using nanowires that can be wirelessly controlled.
Thursday, June 25, 2015
Microsecond Raman Imaging Might Probe Cells, Organs for Disease
An advanced medical diagnostic tool for the early detection of cancer and other diseases.
Thursday, April 02, 2015
Purdue-Based Firms Grow After Receiving Emerging Innovations Fund Investments
The Fund has helped to support new business ventures across a range of research areas.
Friday, March 13, 2015
Keck Foundation to Fund Purdue Research into Spectroscopic Imaging
Ji-Xin Cheng leads a Purdue team awarded a $1 million W.M. Keck Foundation grant to develop a new type of imaging technology for cell and tissue analysis that could bring advanced medical diagnostics.
Tuesday, February 10, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!