Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cornell Research Helps Meet World's Crop Challenges

Published: Thursday, May 02, 2013
Last Updated: Thursday, May 02, 2013
Bookmark and Share
Two Cornell researchers are world experts in studies of little-known plant transport proteins that may be key to easing ever-growing global food needs.

Leon Kochian and Maria Harrison are two of the 12 plant biologists who have authored a perspectives piece in the May 2 issue of Nature. The article explores how newly discovered plant transport proteins have the potential to help expand global agriculture to better address the challenges of feeding billions of underfed people.

Plant transport proteins carry mineral nutrients and key molecules across cell membranes, which are key targets for developing plants that take up nutrients, transport sugar and are tolerant to salt and aluminum.

For example, Kochian, Cornell adjunct professor of plant biology and director of the U.S. Department of Agriculture’s Robert W. Holley Center for Agriculture and Health at Cornell, has identified a transport protein gene that may be responsible for making such crops as sorghum tolerant to aluminum toxicity in soils, which makes 50 percent of the world’s arable lands unusable for agriculture.

“It’s a big problem,” said Kochian, of aluminum toxicity that stems from acidic soils. “Aluminum is the most abundant metal in the Earth’s crust, but in acidic soils, it gets dissolved as aluminum ions that are very toxic to roots,” he said.

The plant’s roots grow from the tip, and it is this part that needs protection from aluminum ions. Kochian and colleagues have identified a transporter in the plasma membrane of root cells that transports citric acid out of the roots where it binds with aluminum ions in the soil and renders them nontoxic to the plants.

The gene that Kochian and colleagues have discovered appears to control transport of organic compounds, such as citric acid, out of the cell.

“We have funding from international agencies to identify molecular markers for the best alleles [versions] of our aluminum tolerance genes,” said Kochian. By identifying the markers that are in or very close to an aluminum tolerance gene, plant breeders will use molecular breeding techniques to identify whether a breeding line contains the desired gene; this would greatly accelerate the process of breeding new varieties.

Similarly, Maria Harrison, the William H. Crocker Professor at the Boyce Thompson Institute for Plant Research on Cornell’s Ithaca campus, has discovered transporters in plants that enable them acquire phosphorus, a nutrient vital for plant growth and yield. Lack of phosphorus in forms accessible to plants limits crop production on close to 70 percent of the world’s agricultural soils. As a result, farmers add fertilizers produced with nonrenewable rock phosphate, reserves of which will be depleted within perhaps 70 years.

While researchers have shown that transporters allow plants to acquire phosphorous from soil directly, Harrison has also studied transporters that work during a symbiotic relationship between plants and soil fungi, called mycorrhizae.  Fungi living in symbiotic compartments in roots capture phosphate from the soil and make these ions accessible for plant phosphate transporters to deliver into root cells. Harrison’s work will help breeders develop plants that can acquire phosphate more efficiently from the soil.

Lead author Julian Schroeder, professor of biology at University of California-San Diego, believes these discoveries require more attention and funding to meet the world’s future food challenges.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Bacteria Be Gone!
New technology keeps bacteria from sticking to surfaces.
Monday, January 19, 2015
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Chemists Show That ALS is a Protein Aggregation Disease
Using a technique that illuminates subtle changes in individual proteins, chemistry researchers at Cornell have uncovered new insight into the underlying causes of Amyotrophic Lateral Sclerosis (ALS).
Thursday, October 23, 2014
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
A New Player in Lipid Metabolism Discovered
Specially engineered mice gained no weight, and normal counterparts became obese on the same high-fat, obesity-inducing Western diet.
Monday, August 18, 2014
Ingested Nanoparticles May Damage Liver
Although nanoparticles in food, sunscreen and other everyday products have many benefits, researchers from Cornell are finding that at certain doses, the particles might cause human organ damage.
Tuesday, August 12, 2014
Foodborne Pathogen Detection Speeds Up Dramatically
Next-generation sequencing techniques allow rapidly identification of strains of salmonella, quickening responses to potential outbreaks.
Monday, July 21, 2014
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!