Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Wacker Biotech and XL-protein Collaboration Yields More Fab Antibody Fragment

Published: Thursday, May 02, 2013
Last Updated: Thursday, May 02, 2013
Bookmark and Share
Wacker Biotech and XL-protein have produced record yields of a PASylated Fab antibody using WACKER’s E. coli based ESETEC® secretion technology.

WACKER developed an efficient bacterial cell line and was able to produce the Fab antibody in concentrations of more than four grams per liter of culture broth. This Fab antibody is being tested as a novel therapeutic agent for treating autoimmune diseases. These results open up new opportunities for developing monovalent antibody drugs that can be produced at lower cost, with fewer side-effects and with a tunable plasma half-life. As part of their recent collaboration agreement, WACKER and XL-protein are offering pharmaceutical customers access to the combination of the PASylation® platform and the ESETEC® technology. WACKER also has the necessary expertise for GMP-compliant production of biologics.
 
In a feasibility study, Wacker Biotech and XL-protein tested the use of WACKER’s patented ESETEC® technology to produce PASylated Fab antibody fragments for the development of new drugs to treat autoimmune.

diseases. The study not only confirmed that the biopharmaceutical can be produced in high yield (4.3 g/l) by the patented ESETEC® technology. It also demonstrated that correctly folded, fully functional antibody fragments are efficiently secreted into the culture broth – this greatly simplifies downstream purification. Detailed biochemical characterization revealed monodispersity of the product and excellent antigen-binding activity.

For many years, antibody products have been a promising growth area for the pharmaceutical industry. Antibodies are highly specific in their ability to intervene with disease mechanisms, and they usually circulate in the body for several weeks. However, in certain indications, some of their features can be detrimental: stimulation of the immune system via the antibody effector region; bivalent binding or crosslinking of the antigen; or the antibodies’ long biological half-life. XL-protein therefore decided to develop a monovalent antigen-binding antibody fragment (Fab) that does not bind immunoreceptors and promises fewer sideeffects. Furthermore, PASylation® prolongs its plasma half-life and thus allows for optimal tuning of drug activity. Fab fragments are derived from human antibodies and can be manufactured as separate recombinant proteins. One of their advantages over full-length antibodies is an improved ability to penetrate the diseased tissue. Since Fabs are not glycosylated, they can be produced cost-effectively in microbial organisms such as E. coli. Nonetheless, Fab antibody fragments are much more difficult to produce than other therapeutic proteins, as they are composed of two different protein subunits and contain several disulfide bridges. So far, conventional production methods have yielded less than 2 grams per liter of culture.

“We are delighted – the results open up new avenues for the development of antibody products,” says Dr. Thomas Maier, managing director of Wacker Biotech. “ESETEC® produces Fab antibody fragments in record yields that until now had only been possible for whole antibodies using mammalian cell cultures. Yet, development and production times with ESETEC® are much faster than with mammalian cells. This saves our customers costs and shortens the time to market.” ESETEC® is a proprietary WACKER technology with a track record of cost-effective production of proteins and antibody fragments. It is based on an E. coli K12 strain which has the ability to secrete correctly folded recombinant proteins into the culture broth during fermentation. Secretion facilitates purification of the target protein, since there is no longer any need for complicated process steps such as homogenization and refolding. This makes the entire manufacturing process significantly more efficient and cost-effective. A number of biologics that have been manufactured with ESETEC® are already being evaluated in preclinical and clinical studies. Plus, a successful preliminary study with XL-protein has shown that the WACKER technology is highly efficient at producing PASylated human growth hormone.

According to Prof. Arne Skerra, managing director of XL-protein GmbH, “The fact that our PASylation® technology allows efficient and inexpensive production of antibody fragments with extended plasma half-life abolishes a major disadvantage of these highly effective and low-side-effect biologics, compared to conventional antibodies. Especially in conjunction with ESETEC®, it is now possible to rapidly manufacture improved antibody products with tailored properties in high yield.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

WACKER’s New Process-Development Unit Focusses on ESETEC® and Supplies First Customers with Double-Digit Gram Quantities of Biologics for Preclinical Development
As part of its ongoing investment in biotech, WACKER recently opened a new process-development building for the production of pharmaceutical proteins, or biologics, in Jena (Germany).
Wednesday, April 01, 2009
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!