Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

RTG and JCVI Embark on Strategic Research Initiative

Published: Friday, May 03, 2013
Last Updated: Friday, May 03, 2013
Bookmark and Share
Long-term collaboration to understand de novo mutations for stem cell progression study and deliver validated, gold-standard datasets.

Real Time Genomics, Inc. (RTG) has announced a long-term strategic collaboration with the J. Craig Venter Institute (JCVI), aimed at understanding and analyzing the genetic changes that induced pluripotent stem cells may acquire during the process of differentiation.

RTG and JCVI have also announced a collaboration to discover and validate highly accurate human variant information using the Venter human reference diploid genome and associated orthogonal information.

The teams will deposit this information into the public databases for use by the life sciences community. The two organizations hope to define best practices and to create standardized reference datasets for the genome sequencing community.

“There is considerable interest in understanding the nature of de novo mutations that are acquired during reprogramming and differentiation of iPSCs. These mutations might affect how iPSCs behave as disease models and could limit the therapeutic use of these cells, but there are many pitfalls in analyzing sequence data to locate and interpret these rare mutations,” said Mark Adams, Scientific Director for the J. Craig Venter Institute.

Adams continued, “Since sequencing and publishing the Venter reference human genome in 2007, we have built a significant dataset around this genome and want to help others leverage the information to improve their own research. RTG is an ideal partner for these projects because of their ability to rapidly analyze data from multiple sequencing platforms with improved accuracy of the resulting variant catalog. We are excited to be working with them on these two important collaborations.”

As part of the collaboration, JCVI will be using the RTG platform and working directly with RTG scientists to identify SNPs, indels, structural variants and de novo mutations in data from both projects.

The RTG platform will be seamlessly integrated into JCVI’s existing pipeline infrastructure.

“The stem cell collaboration with JCVI is an exciting opportunity to move our technology into new areas as cell lineage progression studies are becoming important in a wide range of NGS applications,” said Francisco De La Vega, VP of Genome Sciences at Real Time Genomics.

Vega continued, "At the same time, a problem in clinical applications of sequencing is the difficulty knowing whether sequencing data and results meet a specific accuracy criteria. RTG and the broader community are working to collectively settle on a set of validated datasets to improve research. Because JCVI has considerable orthogonal information related to the Venter reference genome, including Sanger long-read sequence data, data from multiple next-generation sequencing platforms, and even RNAseq data and full phasing information, there is an opportunity to contribute a standard back to the community to improve the sensitivity and specificity of human disease applications using NGS.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Real Time Genomics Appoints Steve Lombardi as CEO
Genomics industry veteran will drive commercialization of the company’s highly scalable core technology for next generation genomic analysis.
Thursday, April 26, 2012
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Structure of Essential Digestive Enzyme Uncovered
Using a powerful combination of techniques from biophysics to mathematics, researchers have revealed new insights into the mechanism of a liver enzyme that is critical for human health.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Following Tricky Triclosan
Antibacterial product flows through streams, crops.
Vitamin A May Help Improve Pancreatic Cancer Chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London (QMUL).
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!