Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Study Uses Botox to Find New Wrinkle in Brain Communication

Published: Friday, May 03, 2013
Last Updated: Friday, May 03, 2013
Bookmark and Share
Results support new view of molecules important for most nerve cell signaling.

National Institutes of Health researchers used the popular anti-wrinkle agent Botox to discover a new and important role for a group of molecules that nerve cells use to quickly send messages.

This novel role for the molecules, called SNARES, may be a missing piece that scientists have been searching for to fully understand how brain cells communicate under normal and disease conditions.

“The results were very surprising,” said Ling-Gang Wu, Ph.D., a scientist at NIH’s National Institute of Neurological Disorders and Stroke. “Like many scientists we thought SNAREs were only involved in fusion.”

Every day almost 100 billion nerve cells throughout the body send thousands of messages through nearly 100 trillion communication points called synapses.

Cell-to-cell communication at synapses controls thoughts, movements, and senses and could provide therapeutic targets for a number of neurological disorders, including epilepsy.

Nerve cells use chemicals, called neurotransmitters, to rapidly send messages at synapses. Like pellets inside shotgun shells, neurotransmitters are stored inside spherical membranes, called synaptic vesicles.

Messages are sent when a carrier shell fuses with the nerve cell’s own shell, called the plasma membrane, and releases the neurotransmitter “pellets” into the synapse.

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) are three proteins known to be critical for fusion between carrier shells and nerve cell membranes during neurotransmitter release.

“Without SNAREs there is no synaptic transmission,” said Dr. Wu.

Botulinum toxin, or Botox, disrupts SNAREs. In a study published in Cell Reports, Dr. Wu and his colleagues describe how they used Botox and similar toxins as tools to show that SNAREs may also be involved in retrieving message carrier shells from nerve cell membranes immediately after release.

To study this, the researchers used advanced electrical recording techniques to directly monitor in real time carrier shells being fused with and retrieved from nerve cell membranes while the cells sent messages at synapses.

The experiments were performed on a unique synapse involved with hearing called the calyx of Held. As expected, treating the synapses with toxins reduced fusion. However Dr. Wu and his colleagues also noticed that the toxins reduced retrieval.

For at least a decade scientists have known that carrier shells have to be retrieved before more messages can be sent. Retrieval occurs in two modes: fast and slow. A different group of molecules are known to control the slow mode.

“Until now most scientists thought fusion and retrieval were two separate processes controlled by different sets of molecules,” said Dr. Wu.

Nevertheless several studies suggested that one of the SNARE molecules could be involved with both modes.

In this study, Dr. Wu and his colleagues systematically tested this idea to fully understand retrieval. The results showed that all three SNARE proteins may be involved in both fast and slow retrieval. “Our results suggest that SNAREs link fusion and retrieval,” said Dr. Wu.

The results may have broad implications. SNAREs are commonly used by other cells throughout the body to release chemicals. For example, SNAREs help control the release of insulin from pancreas cells, making them a potential target for diabetes treatments.

Recent studies suggest that SNAREs may be involved in neurological and psychiatric disorders, such as schizophrenia and spastic ataxia.

“We think SNARES work like this in most nerve cell synapses. This new role could change the way scientists think about how SNAREs are involved in neuronal communication and diseases,” said Dr. Wu.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Scientific News
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos