Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Study Uses Botox to Find New Wrinkle in Brain Communication

Published: Friday, May 03, 2013
Last Updated: Friday, May 03, 2013
Bookmark and Share
Results support new view of molecules important for most nerve cell signaling.

National Institutes of Health researchers used the popular anti-wrinkle agent Botox to discover a new and important role for a group of molecules that nerve cells use to quickly send messages.

This novel role for the molecules, called SNARES, may be a missing piece that scientists have been searching for to fully understand how brain cells communicate under normal and disease conditions.

“The results were very surprising,” said Ling-Gang Wu, Ph.D., a scientist at NIH’s National Institute of Neurological Disorders and Stroke. “Like many scientists we thought SNAREs were only involved in fusion.”

Every day almost 100 billion nerve cells throughout the body send thousands of messages through nearly 100 trillion communication points called synapses.

Cell-to-cell communication at synapses controls thoughts, movements, and senses and could provide therapeutic targets for a number of neurological disorders, including epilepsy.

Nerve cells use chemicals, called neurotransmitters, to rapidly send messages at synapses. Like pellets inside shotgun shells, neurotransmitters are stored inside spherical membranes, called synaptic vesicles.

Messages are sent when a carrier shell fuses with the nerve cell’s own shell, called the plasma membrane, and releases the neurotransmitter “pellets” into the synapse.

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) are three proteins known to be critical for fusion between carrier shells and nerve cell membranes during neurotransmitter release.

“Without SNAREs there is no synaptic transmission,” said Dr. Wu.

Botulinum toxin, or Botox, disrupts SNAREs. In a study published in Cell Reports, Dr. Wu and his colleagues describe how they used Botox and similar toxins as tools to show that SNAREs may also be involved in retrieving message carrier shells from nerve cell membranes immediately after release.

To study this, the researchers used advanced electrical recording techniques to directly monitor in real time carrier shells being fused with and retrieved from nerve cell membranes while the cells sent messages at synapses.

The experiments were performed on a unique synapse involved with hearing called the calyx of Held. As expected, treating the synapses with toxins reduced fusion. However Dr. Wu and his colleagues also noticed that the toxins reduced retrieval.

For at least a decade scientists have known that carrier shells have to be retrieved before more messages can be sent. Retrieval occurs in two modes: fast and slow. A different group of molecules are known to control the slow mode.

“Until now most scientists thought fusion and retrieval were two separate processes controlled by different sets of molecules,” said Dr. Wu.

Nevertheless several studies suggested that one of the SNARE molecules could be involved with both modes.

In this study, Dr. Wu and his colleagues systematically tested this idea to fully understand retrieval. The results showed that all three SNARE proteins may be involved in both fast and slow retrieval. “Our results suggest that SNAREs link fusion and retrieval,” said Dr. Wu.

The results may have broad implications. SNAREs are commonly used by other cells throughout the body to release chemicals. For example, SNAREs help control the release of insulin from pancreas cells, making them a potential target for diabetes treatments.

Recent studies suggest that SNAREs may be involved in neurological and psychiatric disorders, such as schizophrenia and spastic ataxia.

“We think SNARES work like this in most nerve cell synapses. This new role could change the way scientists think about how SNAREs are involved in neuronal communication and diseases,” said Dr. Wu.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Serotonin Transporter Structure Revealed
Researchers determined the 3-D structure of the serotonin transporter and visualized how two common antidepressants interact with the protein.
Wednesday, April 20, 2016
Improving Flu Vaccine Effectiveness
NIH study finds factors that may influence influenza vaccine effectiveness.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
Migration Creates Cancer Cell Vulnerabilities
Scientists found that migration can damage cancer cells’ nuclei and DNA, requiring repairs for their survival. The results may open new avenues for targeting metastatic cancer.
Wednesday, April 13, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
NIH Awards Grants to Explore Vaccine Adjuvants
NIH awards six grants to explore how combination adjuvants improve vaccines.
Wednesday, April 06, 2016
Children With Cushing Syndrome May Have Higher Suicide Risk
Researchers at NIH have found that depression, anxiety and suicidal thoughts increase after treatment.
Wednesday, March 30, 2016
Experimental Vaccine Protects Against Dengue Virus
An experimental dengue vaccine protected all the volunteers who received it from infection with a live dengue virus.
Wednesday, March 30, 2016
Couples’ Pre-Pregnancy Caffeine Consumption Linked to Miscarriage Risk
Researchers at NIH have found daily multivitamin before and after conception greatly reduces miscarriage risk.
Friday, March 25, 2016
Study Finds Mindfulness Meditation Offers Relief For Low-Back Pain
Researchers at NIH have found that the MBSR and CBT may prove more effective than usual treatment in alleviating chronic low-back pain.
Wednesday, March 23, 2016
3-D Technology Enriches Human Nerve Cells For Transplant to Brain
This platform is expected to make transplantation of neurons a viable treatment for a broad range of human neurodegenerative disorders.
Friday, March 18, 2016
Scientists Discover Non-Opioid Pain Pathway in the Brain
Researchers at NIH have discovered evidence for the existence of a non-opioid process in the brain to reduce pain through mindfulness meditation.
Friday, March 18, 2016
Scientific News
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
Experimental Drug Cancels Effect from Key Intellectual Disability Gene
A University of Wisconsin—Madison researcher who studies the most common genetic intellectual disability has used an experimental drug to reverse — in mice — damage from the mutation that causes the syndrome.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Bioreactors Ready for the Big Time
Bioreactors are passive filtration systems that can reduce nitrate losses from farm fields.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
‘Mini-Brains’ to Study Zika
Novel tool expected to speed research on brain and drug development.
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Common Class of Cancer Drugs May Not Lead to Cognitive Decline
UCLA study refutes 2015 research suggesting anthracyclines could cause memory loss, other impairments.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!