Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Find Clues to Some Inherited Heart Diseases

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Cornell researchers have uncovered the basic cell biology that helps explain heart defects found in diseases known as laminopathies.

The findings, published online May 5 in Nature, reveal possible places in a biological pathway where drug therapies may eventually be applied to treat the heart disease associated with such diverse diseases as Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and limb-girdle muscular dystrophy.

Many laminopathies, caused by mutations to the so-called LMNA gene, affect skeletal and cardiac muscles for reasons that have not been well understood. The LMNA gene codes for the proteins lamin A and C, which provide stability to the cell’s nucleus and play important roles in gene regulation.

In order to study heart failure associated with laminopathies, the researchers made use of existing mouse models – mice bred for research that may have an existing, inbred or induced disease that is similar to a human condition. One of the mouse models has mutations in the LMNA gene that produces mice with enlarged hearts that failed, leading to death at eight to 10 weeks of age. Another mouse model used in the study completely lacks lamins A and C, and the mice develop muscular dystrophy with similar heart conditions that cause death at around four to eight weeks of age, said Jan Lammerding, the paper’s senior author, assistant professor in the Weill Institute for Cell and Molecular Biology and the Department of Biomedical Engineering.

In normal cells, a signaling protein called MLK1 resides in the cell’s body, outside of the nucleus. MLK1 binds to a protein called G-actin, which covers up a code on MLK1’s surface that permits entry into the cell’s nucleus. When the cell is mechanically stressed or exposed to specific growth factors, “an adaptive response occurs to reinforce the muscle cell to be fully functional,” said Lammerding.

In the process, G-actin detaches from MKL1 and is converted into another protein called F-actin, which exposes the code for MLK1’s entry into the nucleus. Once inside the nucleus, MLK1 binds to another protein to activate genes for reinforcing the cell’s structure.

In the experimental mice, G-actin failed to consistently convert to F-actin. As a result, G-actin often remained bound to MKL1, blocking its entry code. The culprit behind this disruption was a protein called emerin, which triggers processes that sequester MLK1 in the nucleus and is normally held in place at the nucleus’ inner membrane by lamins A and C. When the lamins were missing or mutated, emerin floated away from the inner nuclear membrane, and MLK1 was quickly exported out of the nucleus. Without MLK1 in the nucleus, the genes that trigger the cell’s adaptations to mechanical stress, including the conversion of G-actin to F-actin, remain inactive, leading to the heart disease found in many laminopathies.

 With this knowledge, researchers may eventually create “drugs that modulate and target downstream consequences by stimulating the impaired pathway and turning it on,” Lammerding added.

Chin Yee Ho, a Weill Institute postdoctoral fellow, was the paper’s lead author. Co-authors include Diana Jaalouk, Weill Institute visiting scientist from the American University of Beirut, Lebanon, and Maria Vartiainen, a researcher at the University of Helsinki.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Bacteria Be Gone!
New technology keeps bacteria from sticking to surfaces.
Monday, January 19, 2015
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Chemists Show That ALS is a Protein Aggregation Disease
Using a technique that illuminates subtle changes in individual proteins, chemistry researchers at Cornell have uncovered new insight into the underlying causes of Amyotrophic Lateral Sclerosis (ALS).
Thursday, October 23, 2014
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
A New Player in Lipid Metabolism Discovered
Specially engineered mice gained no weight, and normal counterparts became obese on the same high-fat, obesity-inducing Western diet.
Monday, August 18, 2014
Ingested Nanoparticles May Damage Liver
Although nanoparticles in food, sunscreen and other everyday products have many benefits, researchers from Cornell are finding that at certain doses, the particles might cause human organ damage.
Tuesday, August 12, 2014
Foodborne Pathogen Detection Speeds Up Dramatically
Next-generation sequencing techniques allow rapidly identification of strains of salmonella, quickening responses to potential outbreaks.
Monday, July 21, 2014
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!